over ${\mathbb Q}$

Over an arbitrary number field

Implementation

An algorithm to compute relative cubic fields

Anna Morra

Université Bordeaux 1

GTEM 3rd annual meeting, September 8, 2009

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introduction

over \mathbb{Q}

Over an arbitrary number field

Implementation

• *K* a number field

$\mathcal{F}_{K,n} = \{ \text{extensions } L/K, \quad [L:K] = n \} / \simeq$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 めへぐ

Introduction

over \mathbb{Q}

Over an arbitrary number field

Implementation

• K a number field

$$\mathcal{F}_{K,n} = \{ \text{extensions } L/K, \quad [L:K] = n \} / \simeq$$

$$N_{K,n}(X) = |\{L \in \mathcal{F}_{K,n}, |\mathcal{N}\mathfrak{d}(L/K)| \leq X\}|.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 めへぐ

over 🤇

Over an arbitrary number field

Implementation

Many questions:

• Exact value of $N_{K,n}(X)$ for fixed (K, n, X).

over 🕻

Over an arbitrary number fiel

Implementation

Many questions:

- Exact value of $N_{K,n}(X)$ for fixed (K, n, X).
- Asymptotics for N_{K,n}(X) for fixed (K, n) and X going to infinity.

over ${\mathbb Q}$

Over an arbitrary number fiel

Implementation

Many questions:

- Exact value of $N_{K,n}(X)$ for fixed (K, n, X).
- Asymptotics for N_{K,n}(X) for fixed (K, n) and X going to infinity.
- Tables of number fields in *F_{K,n}* up to a fixed bound *X* on the relative discriminant.

Some asymptotic results

Introduction

over 🕻

Over an arbitrary number field

Implementation

• Asymptotics for relative quadratic extensions (Wright, Cohen-Diaz y Diaz-Olivier)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Some asymptotic results

Introduction

over 🛛

Over an arbitrary number field

Implementation

- Asymptotics for relative quadratic extensions (Wright, Cohen-Diaz y Diaz-Olivier)
- Asymptotics for cubic extensions Davenport-Heilbronn (K = Q) Datskovsky-Wright (K arbitrary);

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Some asymptotic results

Introduction

over 🛛

Over an arbitrary number field

Implementation

- Asymptotics for relative quadratic extensions (Wright, Cohen-Diaz y Diaz-Olivier)
- Asymptotics for cubic extensions Davenport-Heilbronn (K = Q) Datskovsky-Wright (K arbitrary);

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• Asymptotics for n = 4, 5 and $K = \mathbb{Q}$: Bhargava.

Algorithmics

Introduction

over 🕻

Over an arbitrary number field

Implementation

• Quadratic extensions over \mathbb{Q} : trivial

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 めへぐ

Algorithmics

Introduction

over 🛛

Over an arbitrary number field

Implementation

- Quadratic extensions over \mathbb{Q} : trivial
- An efficient algorithm for computing a list of cubic fields (over Q) of bounded discriminant by Belabas.

Algorithmics

Introduction

over Q

Over an arbitrary number field

Implementation

- Quadratic extensions over \mathbb{Q} : trivial
- An efficient algorithm for computing a list of cubic fields (over Q) of bounded discriminant by Belabas.

What about an algorithm for *relative cubic extensions* ?

Main result

Introduction

over \mathbb{Q}

Over an arbitrary number field

Implementation

Theorem 1

Let K be a number field.

• There exists an algorithm to list all the cubic extensions of K with bounded discriminant.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• If K is imaginary quadratic, with class number 1, this algorithm has polynomial time in the size of the output.

• In particular we can prove it works in $\widetilde{O}(X)$.

Main result

Introduction

over 🛛

Over an arbitrary number field

Implementation

Theorem 1

Let K be a number field.

- There exists an algorithm to list all the cubic extensions of K with bounded discriminant.
- If K is imaginary quadratic, with class number 1, this algorithm has polynomial time in the size of the output.

• In particular we can prove it works in $\widetilde{O}(X)$.

We made an explicit implementation in PARI/GP for the case $\mathcal{K} = \mathbb{Q}(i)$ which can be easily adapted for any imaginary quadratic number field with class number 1.

$\mathsf{Over}\ \mathbb{Q}$

Introduction

over \mathbb{Q}

Over an arbitrary number field

Implementation

Theorem 2 (Levi, Delone-Faddeev, Davenport-Heilbronn, Belabas, Bhargava)

We have a bijection between cubic fields over \mathbb{Q} (up to isomorphism) and classes of irreducible binary cubic forms

$$ax^3 + bx^2y + cxy^2 + dy^3$$
, $a, b, c, d \in \mathbb{Z}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

modulo $GL_2(\mathbb{Z})$, such that $\langle 1, ax, ax^2 + bx \rangle_{\mathbb{Z}}$ is a maximal subring of $\mathbb{Q}[x]/(ax^3 + bx^2 + cx + d)$.

$\mathsf{Over}\ \mathbb{Q}$

Introduction

over \mathbb{Q}

Over an arbitrary number field

Implementation

Theorem 2 (Levi, Delone-Faddeev, Davenport-Heilbronn, Belabas, Bhargava)

We have a bijection between cubic fields over \mathbb{Q} (up to isomorphism) and classes of irreducible binary cubic forms

$$ax^3 + bx^2y + cxy^2 + dy^3$$
, $a, b, c, d \in \mathbb{Z}$

modulo $GL_2(\mathbb{Z})$, such that $\langle 1, ax, ax^2 + bx \rangle_{\mathbb{Z}}$ is a maximal subring of $\mathbb{Q}[x]/(ax^3 + bx^2 + cx + d)$.

Belabas's algorithm : uses Dedekind criterion + sieve methods \implies we can list the $\mathcal{O}(X)$ fields of discriminants bounded by X using $\mathcal{O}(X)$ operations on integers $\leq X$.

Reduction Theory

Introduction

over $\mathbb Q$

Over an arbitrary number field

Implementation

To choose a unique representative for every class of binary cubic forms we need a covariant modulo $GL_2(\mathbb{Z})$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Reduction Theory

Introduction

over $\mathbb Q$

Over an arbitrary number field

Implementation

To choose a unique representative for every class of binary cubic forms we need a covariant modulo $GL_2(\mathbb{Z})$.

To say that $F \rightarrow H_F$ is a covariant means

$$H_{\gamma \cdot F} = \gamma \cdot H_F, \quad \forall \gamma \in \mathsf{GL}_2(\mathbb{Z})$$

Reduction Theory

Introduction

over $\mathbb Q$

Over an arbitrary number field

Implementation

To choose a unique representative for every class of binary cubic forms we need a covariant modulo $GL_2(\mathbb{Z})$.

To say that $F \rightarrow H_F$ is a covariant means

$$H_{\gamma \cdot F} = \gamma \cdot H_F, \quad \forall \gamma \in \mathsf{GL}_2(\mathbb{Z})$$

If $K = \mathbb{Q}$, the Hessian form of $F = ax^3 + bx^2y + cxy^2 + dy^3$ is such a covariant :

$$H_{F} = -\frac{1}{4} \begin{vmatrix} \frac{\partial^{2} F}{\partial x \partial x} & \frac{\partial^{2} F}{\partial x \partial y} \\ \frac{\partial^{2} F}{\partial x \partial y} & \frac{\partial^{2} F}{\partial y \partial y} \end{vmatrix} = Px^{2} + Qxy + Ry^{2}$$

where $P = b^2 - 3ac$, Q = bc - 9ad, $R = c^2 - 3bd$.

over $\mathbb Q$

Over an arbitrary number field

Implementatior

Defined binary quadratic form

- \implies reduction theory (Gauss)
- \implies bounds on P, Q, R in terms of the discriminant

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

 \implies bounds on a, b, c, d.

over $\mathbb Q$

Over an arbitrary number field

Implementatio

Defined binary quadratic form

- \implies reduction theory (Gauss)
- \implies bounds on P, Q, R in terms of the discriminant
- \implies bounds on a, b, c, d.

Thanks to Belabas (Davenport) good bounds we can list all fields with discriminant < X in time $\widetilde{\mathcal{O}}(X)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

Introduction

over $\mathbb Q$

Over an arbitrary number field

Implementation

Let \mathcal{O} be a Dedekind domain. Let $V = (Sym^3 \mathcal{O}^2)^*$.

Introduction

over $\mathbb Q$

Over an arbitrary number field

Implementation

Let \mathcal{O} be a Dedekind domain. Let $V = (\text{Sym}^3 \mathcal{O}^2)^*$.

We can see an element of V as a binary cubic form :

$$F = ax^3 + bx^2y + cxy^2 + d$$
, $a, b, c, d \in \mathcal{O}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let \mathcal{O} be a Dedekind domain. Let $V = (Sym^3 \mathcal{O}^2)^*$.

Introduction

over \mathbb{Q}

Over an arbitrary number field

Implementation

We can see an element of V as a binary cubic form :

$$F = ax^3 + bx^2y + cxy^2 + d, \quad a, b, c, d \in \mathcal{O}.$$

Let $C(\mathcal{O})$ be the set of isomorphism classes of \mathcal{O} -algebras wich are projective of rank 3 as \mathcal{O} -modules (*cubic algebras*).

Let \mathcal{O} be a Dedekind domain. Let $V = (\operatorname{Sym}^3 \mathcal{O}^2)^*$.

Over an number field

We can see an element of V as a binary cubic form :

$$F = ax^3 + bx^2y + cxy^2 + d, \quad a, b, c, d \in \mathcal{O}.$$

Let $\mathcal{C}(\mathcal{O})$ be the set of isomorphism classes of \mathcal{O} -algebras wich are projective of rank 3 as \mathcal{O} -modules (*cubic algebras*).

For any fractional ideal \mathfrak{a} , we define

$$\mathcal{C}(\mathcal{O},\mathfrak{a}) = \{R \in \mathcal{C}(\mathcal{O}) \mid \mathsf{St}(R) = \mathfrak{a}\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

•
$$G_{\mathfrak{a}} = \left\{ \left(\begin{array}{cc} \alpha \in \mathcal{O} & \beta \in \mathfrak{a}^{-1} \\ \gamma \in \mathfrak{a} & \delta \in \mathcal{O} \end{array} \right) \middle| \alpha \delta - \beta \gamma \in \mathcal{O}^{\times} \right\}$$

• $V_{\mathfrak{a}} = \{F = (a, b, c, d) \mid a \in \mathfrak{a}, b \in \mathcal{O}, c \in \mathfrak{a}^{-1}, d \in \mathfrak{a}^{-2} \}$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → の < ⊙

Introductior

over $\mathbb Q$

Over an arbitrary number field

Implementation

over \mathbb{Q}

Over an arbitrary number field

Implementation

•
$$G_{\mathfrak{a}} = \left\{ \left(\begin{array}{cc} \alpha \in \mathcal{O} & \beta \in \mathfrak{a}^{-1} \\ \gamma \in \mathfrak{a} & \delta \in \mathcal{O} \end{array} \right) \middle| \alpha \delta - \beta \gamma \in \mathcal{O}^{\times} \right\}$$

• $V_{\mathfrak{a}} = \{F = (a, b, c, d) \mid a \in \mathfrak{a}, b \in \mathcal{O}, c \in \mathfrak{a}^{-1}, d \in \mathfrak{a}^{-2} \}$

Theorem 3 (Taniguchi)

There exists a canonical bijection between $C(\mathcal{O}, \mathfrak{a})$ and $V_{\mathfrak{a}}/G_{\mathfrak{a}}$ making the following diagram commutative:

$$\begin{array}{ccc} V_{\mathfrak{a}}/G_{\mathfrak{a}} & \longrightarrow & \mathcal{C}(\mathcal{O},\mathfrak{a}) \\ D & & & \downarrow \mathfrak{d} \\ \mathfrak{a}^{-2}/(\mathcal{O}^{\times})^2 & \xrightarrow{\times \mathfrak{a}^2} & \{ \text{ integral ideals of } \mathcal{O} \} \end{array}$$

Finding the covariant

Introduction

over $\mathbb Q$

Over an arbitrary number field

Implementation

Let \mathcal{O} a maximal *imaginary quadratic* order. Let $F(x, y) = ax^3 + bx^2y + cxy^2 + dy^3$.

Finding the covariant

Introduction

over \mathbb{Q}

Over an arbitrary number field

Implementation

Let \mathcal{O} a maximal *imaginary quadratic* order. Let $F(x, y) = ax^3 + bx^2y + cxy^2 + dy^3$.

$$F(x,1) = a(x - \alpha_1)(x - \alpha_2)(x - \alpha_3) \in \mathbb{C}[x]$$

Finding the covariant

Introduction

over \mathbb{Q}

Over an arbitrary number field

Implementation

Let \mathcal{O} a maximal *imaginary quadratic* order. Let $F(x, y) = ax^3 + bx^2y + cxy^2 + dy^3$.

$$F(x,1) = a(x - \alpha_1)(x - \alpha_2)(x - \alpha_3) \in \mathbb{C}[x]$$

Thanks to the work of G. Julia, J. Cremona and M. Stoll, we know that a covariant for the action of $GL_2(\mathcal{O})$ is the binary hermitian form:

$$H_{F} = t_{1}^{2} |x - \alpha_{1}y|^{2} + t_{2}^{2} |x - \alpha_{2}y|^{2} + t_{3}^{2} |x - \alpha_{3}y|^{2},$$

where $t_i^2 = |a|^2 |\alpha_j - \alpha_k|^2$ *i*, *j*, *k* pairwise distinct.

We can write

Introduction

over (

Over an arbitrary number field

Implementation

 $H_F = P|x|^2 + Qx\overline{y} + \overline{Q}\overline{x}y + R|y|^2,$

We can write

Introduction

over 🛛

Over an arbitrary number field

Implementation

$$H_F = P|x|^2 + Qx\overline{y} + \overline{Q}\overline{x}y + R|y|^2,$$

where

$$\left\{ \begin{array}{l} P = t_1^2 + t_2^2 + t_3^2 \in \mathbb{R} \\ Q = \alpha_1 t_1^2 + \alpha_2 t_2^2 + \alpha_3 t_3^2 \in \mathbb{C} \\ R = |\alpha_1|^2 t_1^2 + |\alpha_2|^2 t_2^2 + |\alpha_3|^2 t_3^2 \in \mathbb{R}. \end{array} \right.$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → の < ⊙

We can write

Introduction

over 🛛

Over an arbitrary number field

Implementation

$$H_F = P|x|^2 + Qx\overline{y} + \overline{Q}\overline{x}y + R|y|^2,$$

where

$$\begin{cases} P = t_1^2 + t_2^2 + t_3^2 \in \mathbb{R} \\ Q = \alpha_1 t_1^2 + \alpha_2 t_2^2 + \alpha_3 t_3^2 \in \mathbb{C} \\ R = |\alpha_1|^2 t_1^2 + |\alpha_2|^2 t_2^2 + |\alpha_3|^2 t_3^2 \in \mathbb{R}. \end{cases}$$

Let

$$\Delta := PR - |Q|^2 (= 3|D(F)|)$$

The hyperbolic 3-space

Introductior

over \mathbb{Q}

Over an arbitrary number field

Implementation

 $\begin{aligned} \mathcal{H}_3 &= \{z+tj \mid z \in \mathbb{C}, t \in \mathbb{R}^+\} \\ &= \{h=z+tj \mid h \in \mathbb{H}, \text{ s.t. the } k-\text{component is } 0, t>0\} \end{aligned}$

where \mathbb{H} is the quaternions ring.

The hyperbolic 3-space

Introductior

over \mathbb{Q}

Over an arbitrary number field

Implementation

 $\mathcal{H}_3 = \{ z + tj \mid z \in \mathbb{C}, t \in \mathbb{R}^+ \}$ = $\{ h = z + tj \mid h \in \mathbb{H}, \text{ s.t. the } k - \text{component is } 0, t > 0 \}$

where \mathbb{H} is the quaternions ring.

The action of $SL_2(\mathbb{C})$ on \mathcal{H}_3 (quaternion notation)

 $M \cdot (h) = (Ah + B)/(Ch + D),$

for each $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathsf{SL}_2(\mathbb{C}), h \in \mathcal{H}_3.$

The hyperbolic 3-space

Introductior

over \mathbb{Q}

Over an arbitrary number field

Implementation

 $\mathcal{H}_3 = \{ z + tj \mid z \in \mathbb{C}, t \in \mathbb{R}^+ \}$ = $\{ h = z + tj \mid h \in \mathbb{H}, \text{ s.t. the } k - \text{component is } 0, t > 0 \}$

where \mathbb{H} is the quaternions ring.

The action of $SL_2(\mathbb{C})$ on \mathcal{H}_3 (quaternion notation)

 $M \cdot (h) = (Ah + B)/(Ch + D),$

for each
$$M=\left(egin{array}{cc} A & B \ C & D \end{array}
ight)\in {\sf SL}_2(\mathbb{C}), h\in \mathcal{H}_3.$$

Let $\mathscr{P} = \{ \text{ positive definite binary hermitian forms in } \mathbb{C} \}$ and let $\widetilde{\mathscr{P}} = \mathscr{P}/\mathbb{R}^+$ where \mathbb{R}^+ acts on \mathscr{P} by multiplication.

over Q

Over an arbitrary number field

Implementation

$\Phi:\mathscr{P}\to\mathcal{H}_3$ defined by:

$$\Phi\left(\left(egin{array}{cc} P & Q \ \overline{Q} & R \end{array}
ight)
ight) = -rac{Q}{P} + rac{\sqrt{\Delta}}{P}j.$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → の < ⊙

Over an arbitrary number field

Implementation

$$\Phi: \mathscr{P} \to \mathcal{H}_3$$
 defined by:

$$\Phi\left(\left(\begin{array}{cc} P & Q \\ \overline{Q} & R \end{array}
ight)
ight) = -rac{Q}{P} + rac{\sqrt{\Delta}}{P}j.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

 Φ induces a bijection $\widetilde{\Phi} : \widetilde{\mathscr{P}} \to \mathcal{H}_3$, wich commutes with the action of $SL_2(\mathcal{O})$.

over Q

Over an arbitrary number field

Implementation

$$\Phi: \mathscr{P} \to \mathcal{H}_3$$
 defined by:

$$\Phi\left(\left(\begin{array}{cc} P & Q \\ \overline{Q} & R \end{array}\right)\right) = -\frac{Q}{P} + \frac{\sqrt{\Delta}}{P}j.$$

 Φ induces a bijection $\widetilde{\Phi} : \widetilde{\mathscr{P}} \to \mathcal{H}_3$, wich commutes with the action of $SL_2(\mathcal{O})$.

Fundamental domains of \mathcal{H}_3 modulo $SL_2(\mathcal{O})$ are well-known (Swan, Elstrodt-Grunewald-Mennicke, etc).

over $\mathbb Q$

Over an arbitrary number field

Implementation

When h_K = 1, from the description of the fundamental domain for H₃ modulo SL₂(O) we get a lower bound t ≥ t_K only depending on the discriminant of the number field K, for z + it ∈ H₃ in the fundamental domain. This allows us to bound P, Q, R., and then a, b, c, d.

over $\mathbb Q$

Over an arbitrary number field

Implementation

When h_K = 1, from the description of the fundamental domain for H₃ modulo SL₂(O) we get a lower bound t ≥ t_K only depending on the discriminant of the number field K, for z + it ∈ H₃ in the fundamental domain. This allows us to bound P, Q, R., and then a, b, c, d.

• (Work in progress) When $h_K > 1$, there are points of the fundamental domain such that t = 0 (cusps), so we need some supplementary group action to send all this points to the one at infinity. Once this action found, it should be possible to bound P, Q, R and to get an explicit algorithm also in the case $h_K \neq 1$.

Introduction

over \mathbb{Q}

Over an arbitrary number field

Implementation

{cubic extensions L/K, with $\mathfrak{d}(L/K) \leq X$ }/ ~

Introduction

over \mathbb{Q}

Over an arbitrary number field

Implementation

{cubic extensions L/K, with $\mathfrak{d}(L/K) \leq X$ }/ ~ \uparrow {binary cubic forms modulo $GL_2(\mathcal{O})$ }

Introduction

over $\mathbb Q$

Over an arbitrary number field

Implementation

 $\begin{aligned} \{ \text{cubic extensions } L/K, \text{ with } \mathfrak{d}(L/K) \leq X \} / \sim \\ & \uparrow \\ \{ \text{binary cubic forms modulo } GL_2(\mathcal{O}) \} \\ & \downarrow \\ \{ (\text{covariant}) \text{ positive definite binary hermitian forms} \} \end{aligned}$

Introduction

over $\mathbb Q$

Over an arbitrary number field

Implementation

 $\begin{aligned} \{ \text{cubic extensions } L/K, \text{ with } \mathfrak{d}(L/K) \leq X \} / \sim & \uparrow \\ \{ \text{binary cubic forms modulo } GL_2(\mathcal{O}) \} \\ \downarrow \\ \{ (\text{covariant}) \text{ positive definite binary hermitian forms} \} \\ & \uparrow \\ \{ \text{points of } \mathcal{H}_3 \text{ modulo } GL_2(\mathcal{O}) \}. \end{aligned}$

over \mathbb{Q}

Over an arbitrary number field

Implementation

Theorem 4

Let F be a binary cubic form with coefficients in \mathcal{O} which is reduced modulo $SL_2(\mathcal{O})$ (weaker conditions than $GL_2(\mathcal{O})$). Then $|a| \ll |D|^{1/4}; \quad |b| \ll |D|^{1/4}$

 $|ad| \ll |D|^{1/2}; \quad |bc| \ll |D|^{1/2}.$

and so we can loop on all these (a, b, c, d) in time $\tilde{\mathcal{O}}(X)$.

Proposition 1

Over an arbitrary number field

Implementation

Let $F_1 \neq F_2$, two binary cubic forms, $F_2 = M \cdot F_1$ for some $M \in GL_2(\mathcal{O})$. Let H_{F_1} and H_{F_2} be both reduced hermitian forms. Then two cases are possible:

●
$$H_{F_1} = H_{F_2} = H$$
 and $M \in Aut(H)$ (i.e. $M.H = H$);

*H*_{F1} ≠ *H*_{F2} but they are both on the boundary of the fundamental domain *F* and they are in the same orbit modulo GL₂(*O*).

We will call M as in the proposition an automorphism matrix.

over Q

Over an arbitrary number field

Implementation

Let *M* be an automorphism matrix. Then its coefficients are explicitly bounded in terms of the bound *X* on $\mathfrak{d}(L/K)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

over \mathbb{Q}

Over an arbitrary number field

Implementation

Let *M* be an automorphism matrix. Then its coefficients are explicitly bounded in terms of the bound *X* on $\mathfrak{d}(L/K)$.

• We loop on all possible M.

over \mathbb{Q}

Over an arbitrary number field

Implementation

Let *M* be an automorphism matrix. Then its coefficients are explicitly bounded in terms of the bound *X* on $\mathfrak{d}(L/K)$.

• We loop on all possible M.

• We obtain a 4×4 system.

over \mathbb{Q}

Over an arbitrary number field

Implementation

Let *M* be an automorphism matrix. Then its coefficients are explicitly bounded in terms of the bound *X* on $\mathfrak{d}(L/K)$.

- We loop on all possible M.
- We obtain a 4×4 system.
- we look at the rank of the matrix (allows to directly discard some cases)

over \mathbb{Q}

Over an arbitrary number field

Implementation

Let *M* be an automorphism matrix. Then its coefficients are explicitly bounded in terms of the bound *X* on $\mathfrak{d}(L/K)$.

- We loop on all possible M.
- We obtain a 4×4 system.
- we look at the rank of the matrix (allows to directly discard some cases)

 we check that the space of the solutions is in the fundamental domain.

Introduction

over 🕻

Over an arbitrary number field

Implementation

• Floating point computations to check if a point is in the fundamental domain.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 めへぐ

Introduction

over 🤇

Over an arbitrary number field

Implementation

• Floating point computations to check if a point is in the fundamental domain.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

• Study of the precision needed

Introduction

over 🤇

Over an arbitrary number field

Implementation

• Floating point computations to check if a point is in the fundamental domain.

- Study of the precision needed
- Exact check for points "near" the borders

Introduction

over 🤇

Over an arbitrary number field

Implementation

- Floating point computations to check if a point is in the fundamental domain.
 - Study of the precision needed
 - Exact check for points "near" the borders
 - Mahler theorem to check our results are correct.

(from an idea of J. Cremona) Unimodular transformations $\tau_k = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$, $k \in \mathcal{O}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introduction

over 🔇

Over an arbitrary number field

Implementation

(from an idea of J. Cremona) Unimodular transformations $\tau_k = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$, $k \in \mathcal{O}$.

Over an arbitrary

Implementation

$$\tau_k: (a, b, c, d) \rightarrow (a, b+3ak, 3ak^2+2bk+c, ak^3+bk^2+ck+d).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 \implies we can reduce *b* modulo 3*a*.

(from an idea of J. Cremona) Unimodular transformations $\tau_k = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$, $k \in \mathcal{O}$.

over 0

Over an arbitrary number field

Implementation

$$au_k: (a, b, c, d) \rightarrow (a, b+3ak, 3ak^2+2bk+c, ak^3+bk^2+ck+d).$$

 \implies we can reduce *b* modulo 3*a*.

 au_k leave unchanged $P_H = b^2 - 3ac$, and $P \leq 2^{1/3} |D|^{1/2}$ so

$$|c| \le rac{|b|^2 + 2^{1/3}X^{1/2}}{3|a|}$$

◆□ > ◆□ > ◆三 > ◆三 > 三 のへで

(from an idea of J. Cremona) Unimodular transformations $\tau_k = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$, $k \in \mathcal{O}$.

over O

Over an arbitrary number fiel

Implementation

$$\tau_k: (a, b, c, d) \rightarrow (a, b+3ak, 3ak^2+2bk+c, ak^3+bk^2+ck+d).$$

 \implies we can reduce *b* modulo 3*a*.

 au_k leave unchanged $P_H = b^2 - 3ac$, and $P \leq 2^{1/3} |D|^{1/2}$ so

$$|c| \leq rac{|b|^2 + 2^{1/3}X^{1/2}}{3|a|}$$

Same asymptotic time $\widetilde{O}(X)$ but a practical gain : more than 10 times faster !

Some results

Introduction

over \mathbb{Q}

Over an arbitrary number field

Implementation

X	N(X)	t
104	276	4 s
$4 \cdot 10^4$	1339	16 s
$9 \cdot 10^4$	3305	44 s
10 ⁶	42692	16 mn 15 s
4 * 10 ⁶	181944	1h 45 mn 29s
$9 \cdot 10^{6}$	421559	5h 50 mn
108	4990974	194h 47 mn

(Intel Xeon 5160 dual core, 3.0 GHz)

Introduction

over (

Over an arbitrary number field

Implementation

• Advantages (comparing with ray class field algorithm)

Introduction

over 🕻

Over an arbitrary number field

Implementation

• Advantages (comparing with ray class field algorithm)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

Problems

Introduction

over 🕻

Over an arbitrary number field

Implementation

• Advantages (comparing with ray class field algorithm)

- Problems
- Work in progress

Introduction

over 🤇

Over an arbitrary number field

Implementation

- Advantages (comparing with ray class field algorithm)
- Problems
- Work in progress

Thank you !