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e Asymptotics for Nk ,(X) for fixed (K, n) and X going to
infinity.

o Tables of number fields in Fi , up to a fixed bound X on
the relative discriminant.
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Introduction

o Asymptotics for relative quadratic extensions (Wright,
Cohen-Diaz y Diaz-Olivier)

o Asymptotics for cubic extensions Davenport-Heilbronn
(K = Q) Datskovsky-Wright (K arbitrary);

o Asymptotics for n = 4,5 and K = Q : Bhargava.
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@ Quadratic extensions over Q: trivial

o An efficient algorithm for computing a list of cubic fields
(over Q) of bounded discriminant by Belabas.

What about an algorithm for relative cubic extensions ?
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Main result

Let K be a number field.
o There exists an algorithm to list all the cubic extensions of
K with bounded discriminant.
o If K is imaginary quadratic, with class number 1, this
algorithm has polynomial time in the size of the output.

Introduction

o In particular we can prove it works in O(X).

We made an explicit implementation in PARI/GP for the case
K = Q(/) which can be easily adapted for any imaginary
quadratic number field with class number 1.
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modulo GLy(Z), such that (1, ax, ax® + bx),, is a maximal
subring of Q[x]/(ax® + bx? + cx + d).




Theorem 2 (Levi, Delone-Faddeev, Davenport-Heilbronn,
Belabas, Bhargava)

We have a bijection between cubic fields over Q (up to
isomorphism) and classes of irreducible binary cubic forms

ax3 + bx%y + exy® +dy®, a,b,c,d€Z

modulo GLy(Z), such that (1, ax, ax® + bx),, is a maximal
subring of Q[x]/(ax® + bx? + cx + d).

Belabas’s algorithm : uses Dedekind criterion + sieve
methods = we can list the O(X) fields of discriminants
bounded by X using O(X) operations on integers < X.
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Reduction Theory

To choose a unique representative for every class of binary
cubic forms we need a covariant modulo GL2(Z).

To say that F — Hf is a covariant means

H,y.,t: =~-He, Vye GLQ(Z) J

If K =Q, the Hessian form of F = ax3 + bx%y + cxy? + dy3 is
such a covariant :

1| 2E  2F
He = 2 %’;‘9,_5 ‘98’5‘9,_2’ = Px* + Qxy + Ry?,
Oxdy  Oydy

where P = b?> — 3ac, Q = bc — 9ad, R = ¢?> — 3bd.
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Defined binary quadratic form
= reduction theory (Gauss)
— bounds on P, @, R in terms of the discriminant
= bounds on a, b, ¢, d.

Thanks to Belabas (Davenport) good bounds we can list all
fields with discriminant < X in time O(X).
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Over an arbitrary number field

Let O be a Dedekind domain.
Let V = (Sym3 O?)*.

Over an We can see an element of V as a binary cubic form :

arbitrary
number field

F=a3+b%y +cxy?+d, ab,c,deO.

Let C(O) be the set of isomorphism classes of O-algebras wich
are projective of rank 3 as O-modules (cubic algebras).

For any fractional ideal a, we define

C(0,a) = {R € C(O) | St(R) = a}
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_ ac O pBeal B o
OGQ_{(’yGa 50 )oz5 ﬂ’ye(’)}

o Vo={F=(a,bc,d)|acabcO,ccaldeca?}

Over an
arbitrary
number field

Theorem 3 (Taniguchi)

There exists a canonical bijection between C(O,a) and V,/Gqy
making the following diagram commutative:

Vo/Ga —— C(O,a)

o] |

a=2/(0*)? _x&, { integral ideals of O}
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Finding the covariant

Let O a maximal imaginary quadratic order.
Let F(x,y) = ax3 + bx?y + cxy? + dy3.

number field

e F(x,1) = a(x — a1)(x — an)(x — a3) € Clx]. J




Finding the covariant

Let O a maximal imaginary quadratic order.
Let F(x,y) = ax3 + bx?y + cxy? + dy3.

Over an
arbitrary

number field F(X’ 1) = a(x - O‘1)(X - CY2)(X - a3) S (C[X] J

Thanks to the work of G. Julia, J. Cremona and M. Stoll, we

know that a covariant for the action of GL2(O) is the binary
hermitian form:

Hr = lx — ary? + lx — ooy + Blx — oy, |

where t? = |a|?|a; — ak|® i,j, k pairwise distinct.
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where
P=t2+t2+t2cR
Q= a1t? + axt? + a3tz € C
R = |1 *t? + |a2|?t3 + |as|?t € R.



We can write

Hr = P|x* + Qxy + Qxy + R|y|%,

Over an
arbitrary
number field

where

P=t2+t3+t2€R

Q= a1t? + axt? + a3tz € C

R = |1 *t? + |a2|?t3 + |as|?t € R.
Let

A = PR — |Q[*(= 3|D(F)|)
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The hyperbolic 3-space

Hs = {z+tj|zeC,teR"}
= {h=z+1t | heH, s.t. the k— component is 0,t > 0]

Over an
arbitrary

number field where H is the quaternions ring.

The action of SLo(C) on H3 (quaternion notation)

M - (h) = (Ah+ B)/(Ch + D), |
for each M = ( é\. g ) € SLy(C), h € Hs.

Let & = { positive definite binary hermitian forms in C}
and let 2 = Z/R* where RT acts on & by multiplication.
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Over an
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number field

¢ 1 & — Hz defined by:

® induces a bijection ¢: P — Hs,
wich commutes with the action of SL2(O).

Fundamental domains of H3 modulo SLy(O) are well-known
(Swan, Elstrodt-Grunewald-Mennicke, etc).
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t > tx only depending on the discriminant of the number
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@ When hx = 1, from the description of the fundamental
domain for H3 modulo SLy(O) we get a lower bound
t > tx only depending on the discriminant of the number
field K, for z + it € H3 in the fundamental domain.
This allows us to bound P, Q, R., and then a, b, ¢, d.

o (Work in progress) When hy > 1, there are points of the
fundamental domain such that t = 0 (cusps), so we need
some supplementary group action to send all this points to
the one at infinity. Once this action found, it should be
possible to bound P, @, R and to get an explicit algorithm
also in the case hyx # 1.
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When hx =1

ooy {cubic extensions L/K, with d(L/K) < X}/ ~

number field

{binary cubic forms modulo GL,(O)}
1

{(covariant) positive definite binary hermitian forms}

{points of H3 modulo GL(O)}.



Over an
arbitrary
number field

Theorem 4

Let F be a binary cubic form with coefficients in O which is
reduced modulo SLy(O) (weaker conditions than GL2(0O)).
Then

la| < |D|M*;  |b| < |DJ*
lad| < |D|*?;  |be| < |D|Y2.

and so we can loop on all these (a, b, ¢, d) in time O(X).




Proposition 1

Let F1 # F», two binary cubic forms, F, = M - F; for some
Over an M € GLy(O). Let Hf, and HE, be both reduced hermitian

arbitrary

humber feld forms. Then two cases are possible:
Q He, = Hp, =H and M € Aut(H) (ie. M.H=H);
@ Hf, # HF, but they are both on the boundary of the

fundamental domain F and they are in the same orbit
modulo GL2(O).

We will call M as in the proposition an automorphism matrix.
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Let M be an automorphism matrix. Then its coefficients are
explicitly bounded in terms of the bound X on d(L/K).

Over an
arbitrary
number field

o We loop on all possible M.
o We obtain a 4 x 4 system.

o we look at the rank of the matrix (allows to directly
discard some cases)

@ we check that the space of the solutions is in the
fundamental domain.
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Implementation

o Floating point computations to check if a point is in the
fundamental domain.

Implementation L.
o Study of the precision needed

@ Exact check for points “near” the borders

@ Mahler theorem to check our results are correct.
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Another kind of reduction

(from an idea of J. Cremona)
k

Unimodular transformations 7 = < 0 1

) keo

7« : (a, b, ¢, d) — (a, b+3ak, 3ak?>+2bk+c, ak3+bk2—|—ck+d).J

Implementation
— we can reduce b modulo 3a.
7« leave unchanged Py = b? — 3ac, and P < 2/3|D|/2 so

|C| _ ‘b’2—|-21/3X1/2
B 3al

Same asymptotic time 5(X) but a practical gain : more than
10 times faster !




Some results

X [ NX) ] t |
10% 276 4s
4-10% | 1339 16 s
9.10* 3305 44 s
Implementation ]_()6 42692 16 mn 15 s

4%10° | 181944 | 1h 45 mn 29s
9-10° | 421559 5h 50 mn
108 | 4990974 | 194h 47 mn

(Intel Xeon 5160 dual core, 3.0 GHz)
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o Advantages (comparing with ray class field algorithm)
@ Problems

Implementation

o Work in progress

Thank you !
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