Programme de khôlle MPSI n°8 - du 18/11/24 au 22/11/24

1. Primitives et intégrales

- Définition de primitive
- Toute fonction continue sur [a, b] admet des primitives (toutes égales à une constante près)
- Calcul de primitives et intégrales simples
- Fonctions définies par une intégrale (montrer qu'elle sont définies, continues, dérivables, ... puis calculer leur dérivée).
- Interprétation géométrique de l'intégrale et approximation avec les aires des rectangles
- Relation de Chasles (application au calcul d'intégrale de valeurs absolues...)
- Propriétés de l'intégrale (positivité, croissance, si l'intégrale d'une fonction positive et continue est nulle alors la fonction est nulle, majoration de la valeur absolue d'une intégrale,...)
- inégalité de la moyenne
- Intégration par parties
- Changement de variable
- Intégrales de fonctions de la forme $f(x) = \frac{1}{ax^2 + bx + c}$
- Intégrales de fonctions à valeurs complexes

Questions de cours (démonstrations à connaître)

• Primitives et intégrales

Soient f et g des fonctions continues sur [a, b] ($a \le b$).

1. Si
$$f$$
 est positive sur $[a, b]$ alors $\int_a^b f(t) dt \ge 0$.

2. Si
$$\forall x \in [a, b], f(x) \le g(x)$$
 alors $\int_a^b f(t) dt \le \int_a^b g(t) dt$

3. Si
$$f$$
 est positive et continue sur $[a,b]$ et $\int_a^b f(t) dt = 0$ alors $\forall x \in [a,b], f(x) = 0$

4.
$$\left| \int_{a}^{b} f(t) dt \right| \leq \int_{a}^{b} \left| f(t) \right| dt$$

5. Soit
$$f$$
 une fonction continue sur $[-a, a]$ et impaire. Alors on a : $\int_{-a}^{a} f(t) dt = 0$.

6. Soit
$$f$$
 une fonction continue sur $\mathbb R$ et T -périodique.

Alors pour tout
$$a \in \mathbb{R}$$
 on a:
$$\int_{a}^{a+T} f(t) dt = \int_{0}^{T} f(t) dt$$