Programme de khôlle MPSI n°1 - du 16/09/24 au 20/09/24

1. Notations, méthodes de raisonnement :

- Ensembles : vocabulaire, opérations, partition d'un ensemble, produit cartesien, ensemble des parties, ensembles de nombres usuels.
- Logique : quantificateurs, implications, équivalence, négation.
- Méthodes de démonstration :
 - (i) $\forall x \in E, P(x)$ "
 - (ii) $\exists ! x \in E, P(x)$ "
 - (iii) $A \subset B$
 - (iv) $P_1 \Rightarrow P_2$ " (deux types de démonstration possibles)
 - (v) $P_1 \Leftrightarrow P_2$.
 - (vi) "Prouver que les éléments de E sont les fonctions telles que ..."
 - (vii) Démonstration par disjoinction de cas
- (viii) $\forall n \in \mathbb{N}, \mathcal{P}(n)$ " (démonstration par récurrence : rédactions types de la récurrence simple, à deux crans et forte).
- (ix) Démonstration par absurde.
- (x) Démonstration par analyse synthèse.

2. Calcul algébrique

- Calculs avec ∑
 - somme des termes d'une suite arithmétique
 - somme des termes d'une suite géométrique
 - changements d'indices
 - sommes télescopiques...
 - pas de sommes doubles!
- Calculs avec ∏
 - factorielle
 - passage du produit à une somme avec du logarithme
 - changements d'indices
 - produit télescopique...
- · Les coefficients binomiaux ne sont pas encore au programme

Questions de cours (démonstrations à connaître)

• Notations, méthodes de raisonnement

1. On admet que si A et B sont deux ensembles finis disjoints, alors :

$$Card(A \cup B) = Card(A) + Card(B)$$
.

Montrer la formule $\boxed{\operatorname{Card}(A \cup B) = \operatorname{Card}(A) + \operatorname{Card}(B) - \operatorname{Card}(A \cap B)}$ pour A et B deux ensembles finis quelconques.

(on pourra exploiter un dessin pour illustrer la démonstration, mais on écrira aussi les formules pour chaque ensemble et les calculs...)

2. Soit *E* un ensemble fini. Soit $A \subset E$. Montrer $Card(\overline{A}) = CardE - CardA$.

• Sommes et produits (soit $n \in \mathbb{N}^*$)

- 3. Formule et démonstration pour $\sum_{k=1}^{n} k$.
- 4. Formule et démonstration pour $\sum_{k=1}^{n} k^2$.
- 5. Formule et démonstration pour $\sum_{k=1}^{n} k^3$.
- 6. Formules et démonstrations pour $\sum_{k=0}^{n} x^k$. (Faire la disjonction de cas : x = 1, $x \ne 1$).