Programme de khôlle MPSI n°19 - du 10/03/25 au 14/03/25

1. Espaces vectoriels

- · Définition d'espace vectoriel
- Exemples classiques d'espaces vectoriels
- Définition et caractérisation de sous-espace vectoriel
- · Combinaisons linéaires
- Sous-espace vectoriel engendré par une partie $A \neq \emptyset$ de E notation Vect(A), caractérisation de Vect(A) (comme ensemble des combinaisons linéaires d'éléments de A)
- · Familles génératrices, libres, bases
- Bases canoniques
- Somme de deux sous-espaces vectoriels $E_1 + E_2$: définition et caractérisation (ensemble des sommes d'un élément de E_1 et un élément de E_2)
- Somme directe de deux sous-espaces vectoriels
- Sous-espaces supplémentaires
- Espaces vectoriels de dimension finie
- Relation entre cardinal d'une famille génératrice et cardinal d'une famille libre (en dim finie)
- Cardinal d'une familles libre / génératrice / base en dimension finie
- Théorème de la base extraite
- Théorème de la base incomplète
- · Dimension d'un sous-espace vectoriel
- Existence du supplémentaire (en dim finie)
- E_1 et E_2 supplémentaires dans $E \iff$ la juxtaposition d'une base de E_1 et une base de E_2 donne une base de E

Questions de cours (démonstrations à connaître)

- **Espaces vectoriels** Soit E un \mathbb{K} -espace vectoriel.
 - 1. Soient E_1 et E_2 deux sous-espaces vectoriels de E. Montrer que $E_1 \cap E_2$ est un sous-espace vectoriel de E.
 - 2. Soit $(e_1, ..., e_n)$ une base du \mathbb{K} -espace vectoriel E. Montrer que pour tout $x \in E$ il existe un unique $(\lambda_1, ..., \lambda_n) \in \mathbb{K}^n$ tel que $x = x_1 e_1 + \cdots + x_n e_n$.
 - 3. La somme E_1+E_2 est directe si, et seulement si, $E_1\cap E_2=\{0\}$
 - 4. Soit E un ev de dim finie n. Montrer que : toute famille libre de n éléments est génératrice.
 - 5. Soit E un ev de dim finie n. Montrer que : toute famille génératrice de n éléments est libre.