EXERCICE 186

1. La condition $F(f_1) = 4f_1$ équivaut à l'équation matricielle $A\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4x \\ 4y \\ 4z \end{pmatrix}$ où x, y, z sont les cordonnées de f_1 dans la base canonique. On obtient donc le système

$$\begin{cases} 5x + y + 2z = 4x \\ -x + 7y + 2z = 4y \\ x + y + 6z = 4z \end{cases}$$

On trouve que l'ensemble des solutions de ce système est $\operatorname{Vect} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$ et on choisit $f_1 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$.

De la même manière (en résolvant deux autres systèmes dont on n'a changé que le terme de droite) on obtient

$$f_2 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \text{ et } f_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

2. P est la matrice ayant pour colonne les vecteurs de la nouvelle base (f_1, f_2, f_3) dans l'ancienne base (canonique) :

$$P = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{array}\right).$$

3. La matrice de passage de \mathcal{B}' vers \mathcal{B} n'est rien d'autre que l'inverse de P. Après calcul on trouve

$$P^{-1} = \frac{1}{2} \left(\begin{array}{ccc} 1 & 0 & -1 \\ 1 & -1 & 0 \\ 0 & 1 & 1 \end{array} \right).$$

4. On sait que la matrice de F dans la base \mathcal{B}' est

$$B = \left(\begin{array}{ccc} 4 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 8 \end{array}\right)$$

les puissances d'une matrice diagonale sont très simples :

$$B^n = \left(\begin{array}{ccc} 4^n & 0 & 0\\ 0 & 6^n & 0\\ 0 & 0 & 8^n \end{array}\right).$$

Or $B = P^{-1}AP$ donc $A = PBP^{-1}$ et une récurrence immédiate donne $A^n = PB^nP^{-1}$ (je vous laisse expliciter la dernière matrice...)

1. Montrons que (b_1, b_2, b_3) est libre : soient $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ tels que

$$\lambda_1(1,1,2) + \lambda_2(-2,-1,3) + \lambda_3(0,-3,-1) = (0,0,0)$$

On obtient le système

$$\begin{cases} \lambda_{1} - 2\lambda_{2} &= 0 \\ \lambda_{1} - \lambda_{2} - 3\lambda_{3} &= 0 \end{cases} \Leftrightarrow \begin{cases} \lambda_{1} - 2\lambda_{2} &= 0 \\ \lambda_{2} - 3\lambda_{3} &= 0 \end{cases} \begin{pmatrix} L_{2} \leftarrow L_{2} - L_{1} \\ L_{3} \leftarrow L_{3} - 2L_{1} \end{pmatrix} \\ 7\lambda_{2} - \lambda_{3} &= 0 \end{cases} \Leftrightarrow \begin{cases} \lambda_{1} - 2\lambda_{2} &= 0 \\ \lambda_{2} - 3\lambda_{3} &= 0 \end{cases} \begin{pmatrix} L_{2} \leftarrow L_{2} - L_{1} \\ L_{3} \leftarrow L_{3} - 2L_{1} \end{pmatrix} \\ \Leftrightarrow \begin{cases} \lambda_{1} - 2\lambda_{2} &= 0 \\ \lambda_{2} - 3\lambda_{3} &= 0 \end{cases} \begin{pmatrix} L_{3} \leftarrow L_{3} - 7L_{2} \end{pmatrix} \\ 20\lambda_{3} &= 0 \end{cases} \Leftrightarrow \begin{cases} \lambda_{1} &= 0 \\ \lambda_{2} &= 0 \\ \lambda_{3} &= 0 \end{cases}$$

On en déduit que la famille (b_1, b_2, b_3) est libre. Or, il s'agit d'une famille de trois éléments dans un espace vectoriel de dimension 3, donc on en déduit que (b_1, b_2, b_3) est une base de \mathbb{R}^3 .

De plus, (b_1, b_2) est une base de E (génératrice par définition, et libre car composée par deux éléments non colináires) et (b_3) est une base de E (génératrice par définition, libre car constituée par un seul élément non nul).

On voit donc que la juxtapostion d'une base de E et d'une base de F est une base de \mathbb{R}^3 . On en déduit que $\mathbb{R}^3 = E \oplus F$.

2. p est la projection sur E parallélément à F. Comme b_1 et b_2 appartiennent à E, alors $p(b_1) = b_1$ et $p(b_2) = b_2$. D'autre part, comme $b_3 \in F$, alors $p(b_3) = 0$.

On en déduit que la matrice de p dans la base \mathscr{B} est $M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

3. On a:

$$\begin{bmatrix}
P = \begin{pmatrix}
1 & -2 & 0 \\
1 & -1 & -3 \\
2 & 3 & -1
\end{bmatrix} et
P^{-1} = \begin{pmatrix}
\frac{1}{2} & -\frac{1}{10} & \frac{3}{10} \\
-\frac{1}{4} & -\frac{1}{20} & \frac{3}{20} \\
\frac{1}{4} & -\frac{7}{20} & \frac{1}{20}
\end{pmatrix}$$

4. On sait d'après le cours (matrices de changement de base) que $M = P^{-1}NP$ (ou encore $N = PMP^{-1}$). On obtient donc

$$N = \begin{pmatrix} 1 & 0 & 0 \\ \frac{3}{4} & -\frac{1}{20} & \frac{3}{20} \\ \frac{1}{4} & -\frac{7}{20} & \frac{21}{20} \end{pmatrix}$$