EXERCICE 101

On sait que f est de classe \mathscr{C}^2 sur [a, a+2h], donc la fonction φ , définie par $\varphi(x)=f(x+h)-f(x)$ est de classe \mathscr{C}^2 sur [a, a+h].

On a:
$$\varphi(a) = f(a+h) - f(a)$$
 et $\varphi(a+h) = f(a+2h) - f(a+h)$,
donc $\varphi(a+h) - \varphi(a) = f(a+2h) - 2f(a+h) + f(a)$

D'autre part, pour tout $x \in [a, a+h]$, on a : $\varphi'(x) = f'(x+h) - f'(x)$

Donc d'après le théorème des accroissements finis, il existe $b \in]a, a + h[$ tel que $\varphi(a + h) - \varphi(a) = h \cdot \varphi'(b)$

Mais alors
$$\varphi(a+h) - \varphi(a) = h(f'(b+h) - f'(b))$$

f' est de classe \mathscr{C}^1 sur [a, a+2h], donc elle est \mathscr{C}^1 en particulier sur [b, b+h].

Mais alors on peut appliquer le théorème des accroissements finis à f' sur [b, b+h]:

il existe $c \in]b, b+h[(\subset]a, a+2h[)$ tel que

$$f'(b+h) - f'(b) = h \cdot f''(c)$$

En utilisant les égalités encadrées on obtient :

$$f(a+2h) - 2f(a+h) + f(a) = h^2 \cdot f''(c)$$

EXERCICE 103

On considère la fonction $g : \mathbb{R} \to \mathbb{R}$ définie par g(x) = f(x) - f(-x). g est dérivable sur \mathbb{R} et g(0) = 0.

D'après le théorème des accroissements finis (sur [0, x]) il existe $c \in]0, x[$ tel que

$$g(x) - g(0) = x \cdot g'(c)$$

Mais pour tout $x \in \mathbb{R}$, on a g'(x) = f'(x) + f'(-x), donc on en déduit :

$$f(x) - f(-x) = x \left(f'(c) + f'(-c) \right)$$

EXERCICE 104

 $f^{(n)}(c_n) = 0.$

• Première solution : avec des "pointillets" :

f continue sur [a,b], dérivable sur]a,b[et f(a)=f(b)=0, donc (Rolle) $\exists c_1 \in]a,b[$ tel que $f'(c_1)=0$ f' continue sur $[a,c_1]$, dérivable sur $]a,c_1[$ et $f'(a)=f'(c_1)=0$, donc (Rolle) $\exists c_2 \in]a,c_1[$ tel que $f''(c_2)=0$ \vdots $f^{(n-1)}$ continue sur $[a,c_{n-1}]$, dérivable sur $]a,c_{n-1}[$ et $f^{(n-1)}(a)=f^{(n-1)}(c_{n-1})=0$ donc (Rolle) $\exists c_n \in]a,c_{n-1}[$ tel que

• Deuxième solution : par récurrence sur $n \in \mathbb{N}^*$

- Si n = 1 c'est le théorème de Rolle.
- Supposons la propriété vraie pour un certain $n \in \mathbb{N}$. Montrons la pour n+1: on sait que $f(a) = f'(a) = \cdots = f^{(n-1)}(a) = 0$ et f(b) = 0 donc par hypothèse de récurrence, il existe $c_0 \in]a, b[$ tel que $f^{(n)}(c_0) = 0$. Mais on sait aussi que $f^{(n)}(a) = 0$ et comme f dérivable (n+1) fois, alors $f^{(n)}$ est continue sur $[a, c_0]$ et dérivable sur $[a, c_0]$, donc par le théorème de Rolle, $\exists c \in]a, c_0[\subset]a, b[$ tel que $f^{(n+1)}(c) = 0$.

EXERCICE 105

- Existence: Soit $g:[0,1] \to \mathbb{R}$ définie par g(x) = f(x) x. Alors $g(0) \ge 0$ et $g(1) \le 0$. Si g(0) = 0 ou g(1) = 0 on a trouvé un point fixe. Sinon g(0)g(1) < 0 et g continue (par somme de fonctions continues) donc on peut appliquer le théorème des valeurs intermédiaires: $\exists c \in]0,1[$ tel que g(c) = 0 mais alors f(c) = c.
- **Unicité:** Supposons par absurde qu'il existe deux nombres $x_1 < x_2$ dans [0,1], telles que $f(x_1) = x_1$ et $f(x_2) = x_2$. On a alors $g(x_1) = g(x_2) = 0$. g continue sur $[x_1, x_2]$ et dérivable sur $]x_1, x_2[$ (par somme de fonctions dérivables), donc par le théorème de Rolle, il existe $x_0 \in]x_1, x_2[$ tel que $g'(x_0) = 0$. Or g'(x) = f'(x) - 1 donc $g'(x_0) = 0 \Leftrightarrow f'(x_0) = 1$. Par croissance de f' on sait donc que $\forall x \in [x_0, 1]$, $f'(x) \ge 1$.

On applique ensuite le théorème des accroissements finis à la fonction f sur l'intervalle $[x_0,1]$ (f continue sur $[x_0,1]$, dérivable sur $]x_0,1[)$: il existe $c \in]x_0,1[$ tel que $f'(c)=\frac{f(1)-f(x_0)}{1-x_0}=\frac{f(1)-x_0}{1-x_0}$. Mais f(1)<1, donc $f(1)-x_0<1-x_0$ par conséquent f'(c)<1 ce qui contredit le fait que $f'(x)\geq 1$ $\forall x\in [x_0,1]$. Absurde. Donc $x_1=x_2$.

EXERCICE 108

Soit $n \in \mathbb{N}^*$. On a

$$(E_n) xy' - (n-2x^2)y = n-2x^2$$

$$(H_n) xy' - (n-2x^2)y = 0.$$

1. Sur $]0, +\infty[$ ou $]-\infty, 0[$ l'équation (H_n) est équivalente à :

$$(H'_n)$$
 $y' - \frac{(n-2x^2)}{x}y = 0.$

Or sur $]0, +\infty[$ ou $]-\infty, 0[$ $\int \left(\frac{n}{x}-2x\right) dx = n \ln|x| - x^2 + K, K \in \mathbb{R}.$

Donc sur]0, $+\infty$ [la solution générale de (H'_n) est $y_1(x) = \lambda_1 e^{n \ln x - x^2} = \lambda_1 x^n e^{-x^2}$. $(\lambda_1 \in \mathbb{R})$ Et sur] $-\infty$, 0[la solution générale de (H'_n) est $y_2(x) = \lambda e^{n \ln(-x) - x^2} = \lambda(-x)^n e^{-x^2} = \lambda(-1)^n x^n e^{-x^2} = \lambda_2 x^n e^{-x^2}$. $(\lambda \in \mathbb{R}, \lambda_2 = (-1)^n \lambda)$.

2. On cherche une solution particulière constante de (E_n) (sur $]0, +\infty[$ ou $]-\infty, 0[$). On obtient

$$-(n-2x^2)y = n - 2x^2.$$

Donc y = -1.

Donc les solutions de (E_n) sur $]0, +\infty[$ ou $]-\infty, 0[$ sont toutes de la forme

$$y(x) = -1 + \lambda x^n e^{-x^2}, \ \lambda \in \mathbb{R}.$$

3. **Analyse :** Si y est une solution de (E_n) de classe \mathscr{C}^1 sur \mathbb{R} , alors il existe $(\lambda_1, \lambda_2) \in \mathbb{R}^2$ tel que

$$\begin{split} y(x) &= -1 + \lambda_1 x^n e^{-x^2} \quad \forall x \in]-\infty, 0[\\ y(x) &= -1 + \lambda_2 x^n e^{-x^2} \quad \forall x \in]0, +\infty[. \end{split}$$

Or $\lim_{x\to 0^+} y(x) = \lim_{x\to 0^-} y(x) = -1$, donc y(0) = -1 (pour que y soit continue en 0).

D'autre part

$$y'(x) = \begin{cases} \lambda_1(nx^{n-1}e^{-x^2} + x^n(-2x)e^{-x^2} = \lambda_1e^{-x^2}(nx^{n-1} - 2x^{n+1}) & \text{pour } x \in]-\infty, 0[\\ \lambda_2e^{-x^2}(nx^{n-1} - 2x^{n+1}) & \text{pour } x \in]0, +\infty[\end{cases}$$

- Si n = 1 $\lim_{x \to 0^{-}} y'(x) = \lambda_1$ et $\lim_{x \to 0^{+}} y'(x) = \lambda_2$ donc par continuité de y' on obtient $\lambda_1 = \lambda_2$.
- Si $n = 2 \lim_{x \to 0^{-}} y'(x) = \lim_{x \to 0^{+}} y'(x) = 0$ donc λ_1 et λ_2 quelconques.

Synthèse:

• si n = 1 on pose $y(x) = -1 + \lambda x^n e^{-x^2}$. On vérifie que y est bien de classe \mathscr{C}^1 sur \mathbb{R} (elle est de classe \mathscr{C}^{∞}) et que y est bien une solution de (E_n) en 0 :

y(0) = -1 et $y'(0) = \lambda$, on remplace dans (E_n) et on obtient $0 \cdot y' - (1 - 2 \cdot 0^2)(-1) = 1$ ce qui convient.

• si $n \neq 1$, soit $(\lambda_1, \lambda_2) \in \mathbb{R}^2$, on pose

$$y(x) = \begin{cases} \lambda_1 x^n e^{-x^2} & \text{si } x \in]-\infty, 0[\\ -1 & \text{si } x = 0\\ \lambda_2 x^n e^{-x^2} & \text{si } x \in]0, +\infty[. \end{cases}$$

On prouve que y est une solution de (E_n) en 0 de la même manière que pour n = 1, on sait que y est continue (vu dans l'analyse), il reste à prouver que les limites droite et gauche de y'(x) en 0 (déjà calculées) coïncident avec

$$y'(0)$$
. Or $\lim_{h \to 0^+} \frac{y(h) - y(0)}{h} = \lim_{h \to 0^+} \frac{\lambda_2 e^{-h^2} h^n}{h} = \lim_{h \to 0} \lambda_2 e^{-h^2} h^{n-1} = 0$ (car $n > 1$) et de même à gauche, ce qui nous permet de conclure.

EXERCICE 111

g est continue et dérivable sur $\left[0,\frac{1}{2}\right]$ par composition de fonctions continues et dérivables (la fonction f et une fonction

De même, g est continue et dérivable sur $\left[\frac{1}{2}, 1\right]$.

Il reste à étudier la continuité et dérivabilité en $\frac{1}{2}$.

g est continue en $\frac{1}{2}$ si, et seulement si, $\lim_{x \to \frac{1}{2}^{-}} g(x) = \lim_{x \to \frac{1}{2}^{+}} g(x)$.

Or, $\lim_{x \to \frac{1}{2}^{-}} g(x) = f(1)$ et $\lim_{x \to \frac{1}{2}^{-}} g(x) = f(0)$.

Or,
$$\lim_{x \to \frac{1}{2}^{-}} g(x) = f(1)$$
 et $\lim_{x \to \frac{1}{2}^{-}} g(x) = f(0)$.

Pour que g soit continue en $\frac{1}{2}$ il faut que f(0) = f(1).

Supposons donc f(0) = f(1). On aura donc g continue sur [0,1] et dérivable sur $[0,1] \setminus \{\frac{1}{2}\}$. On peut donc appliquer le thérème de la limite de la dérivée.

Or,
$$\lim_{x \to \frac{1}{2}^{-}} g'(x) = \lim_{x \to \frac{1}{2}^{-}} 2f'(2x) = 2f'(1)$$
 et $\lim_{x \to \frac{1}{2}^{+}} g'(x) = \lim_{x \to \frac{1}{2}^{+}} 2f'(2x - 1) = 2f'(0)$.

Il faudra donc f'(0) = f'(1) pour que g soit dérivable.

Conclusion : g est dérivable si, et seulement si, f(0) = f(1) et f'(0) = f(1).