Université Bordeaux I	
Mathématiques	
•	

PNG301

Table des matières

1	Suites numériques	2
2	Séries numériques	6
3	Intégrale définie	8
4	Séries entières	10
5	Séries de Fourier	12
6	Intégrales généralisées	14
7	Intégrales à paramètre	16
8	Transformation de Laplace	18
9	Annales	19

1 Suites numériques

Etudier la nature de chacune des suites réelles $u = (u_n)_{n \ge 0}$ définies ci-dessous :

$$u_n = \frac{-n + \sqrt{n}}{n\sqrt{n}};$$
 $u_n = n \sqrt{n};$ $u_n = \left(1 + \frac{1}{n}\right)^n.$

2 Etudier la nature de chacune des suites réelles $(u_n)_{n\geq 2}$ définies ci-dessous :

$$u_n = \frac{n}{\ln(n)}; \quad u_n = n \sin\left(\frac{1}{n^2}\right); \quad u_n = \ln(n+1) - \ln(n); \quad u_n = \left(\frac{n-1}{n+1}\right)^n; \quad u_n = \frac{e^{n\frac{\pi}{2}}}{e^{n \arctan(n)}}.$$

3

1. Montrer que pour tout $x \ge 0$ et pour tout entier $n \ge 0$, $(1+x)^n \ge 1 + nx$.

2. On considère la suite $(a^n)_{n \ge 0}$, montrer que :

- Si a > 1 alors cette suite diverge vers +∞.

- Si a = 1 alors cette suite est constante.

- Si |a| < 1 alors elle converge vers 0.

- Si a ≤ -1 alors cette suite n'a pas de limite.

 $\boxed{4}$ Déterminer les limites des suites (u_n) suivantes :

$$u_n = \frac{3n-2}{2n+5}; \quad u_n = \frac{5n^3 + 2n^2 - 1}{6n^3 - 1}; \quad u_n = \frac{(n+1)^3 - n^3}{n^2}; \quad u_n = \sin\left(\frac{1}{n}\right); \quad u_n = \cos\left(\frac{\pi}{3} + \frac{1}{n}\right); \quad u_n = \arctan\left(\frac{n^2 + 1}{n}\right);$$

$$u_n = \frac{n}{n!}; \quad u_n = \frac{n^3 + 2n^2 + \sqrt{n}}{3^n}; \quad u_n = \frac{(-1)^n + 2n}{n}; \quad u_n = \frac{\cos^3(n)}{n};$$

$$u_n = \frac{n + \sin(n)}{\sqrt{3n^2 + 1}}; \quad u_n = \frac{(2n + (-1)^n)^2}{n^2 + (-1)^n \sqrt{n}}; \quad u_n = \frac{(-1)^n (2n + 1)}{2^{2n + 1}}.$$

 $\boxed{5}$ Calculer les limites des suites $(u_n)_{n\geq 0}$ dans les cas suivants :

$$u_n = \frac{3^n - 2^n}{3^n + 2^n}; \quad u_n = \sqrt[n]{n^2}; \quad u_n = \sqrt{n+1} - \sqrt{n}$$

.

6 Démontrer que les suites définies ci-dessous sont monotones, en précisant le domaine de validité pour n :

$$u_n = \sqrt{(n+3)};$$
 $u_n = 2^n - n;$ $u_n = \frac{2^n}{n!};$ $u_n = \frac{n^2}{n-2}$

.

7 Dans chacun des cas suivants, étudier la convergence de la suite $(u_n)_{n\geq 0}$, et déterminer la limite lorsqu'elle existe :

$$u_n = \frac{n^2 + 1}{(n+1)^2};$$
 $u_n = n\cos(n) + 2n;$ $u_n = \frac{(2n)!}{(n!)^2};$ $u_n = \sin\left(n\pi - \frac{1}{n}\right);$

8 Trouver la limite des suites :

$$u_n = \frac{2^n + 1 + 3^n + 1}{2^n + 3^n}; \quad u_n = \frac{\cos(n)}{n};$$
$$u_n = \frac{n + (-1)^n}{n - (-1)^n}; \quad u_n = \frac{n\sin(n! - 1515)}{1 + n^2}.$$

9 Etudier la nature des suites complexes suivantes :

$$u_n = \frac{(1+i)^n}{2^n}; \quad u_n = \frac{n^2 i^n}{n^3 + 1}; \quad u_n = \operatorname{th}(n) + i \operatorname{arctan}(n); \quad u_n = \frac{1}{1 + 2^n e^{2in}}.$$

10 On considère la suite $u = (u_n)_{n \ge 0}$ définie par $u_0 = 0$ et

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{3u_n + 1}{2u_n + 2}.$$

- 1. Montrer que $\forall n \in \mathbb{N}$, u_n existe et appartient à [0,1].
- 2. Etudier le sens de variation et la nature de cette suite.
- 3. On note ℓ et ℓ' les solutions de l'équation f(x) = x lorsque $f(x) = \frac{3x+1}{2x+2}$. Montrer que la suite $v = (v_n)_{n \ge 0}$ définie par $v_n = \frac{u_n \ell}{u_n \ell'}$ est géométrique. En déduire les expressions de v_n puis de u_n en fonction de n et retrouver les résultats précédents.

11 On considère la suite $u = (u_n)_{n \ge 0}$ définie par $u_0 = 0$ et

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{1}{2}u_n - 1.$$

- 1. Montrer qu'il existe une suite constante de valeur K vérifiant cette relation.
- 2. En déduire l'expression de u_n en fonction de n [Indication : étudier la suite $(u_n K)_{n \ge 0}$].
- 3. Etudier brièvement la suite u.

On considère la suite $(u_n)_{n\geqslant 0}$ définie par $u_0=1$, et $\forall n\geqslant 0$, $u_{n+1}=f(u_n)$, où $f(x)=x+\frac{1}{x}$. Cette suite est-elle bornée et est-elle convergente?

Pour chacune des suites définies par récurrence $u = (u_n)_{n \ge 0}$ ci-dessous satisfaisant $u_{n+1} = f(u_n)$, déterminer si la suite u est bornée, monotone, convergente et trouver sa limite en cas de convergence.

$$f(x) = x + \frac{1}{x} \text{ et } u_0 = 1,$$

$$f(x) = 1 + \frac{x}{2} \text{ et } u_0 = 1,$$

$$f(x) = \sqrt{\frac{1+x}{2}} \text{ et } u_0 = 1/2,$$

Soit $u = (u_n)_{n \in \mathbb{N}}$ la suite récurrente définie par $u_0 \in \mathbb{R}$ et $u_{n+1} = \frac{1}{2-\sqrt{u_n}}$. Pour quelles valeurs de u_0 la suite u est-elle définie ? Montrer qu'elle converge alors vers 1 sauf si u_0 est égal à une valeur particulière à déterminer.

Soit $u = (u_n)_{n \ge 0}$ la suite récurrente donnée par $u_0 \in \mathbb{R}$ et $u_{n+1} = \frac{u_n}{3-2u_n}$.

- 1. Pour quelle(s) valeur(s) de u_0 la suite u est-elle bien définie?
- 2. Pour quelle(s) valeur(s) de u_0 la suite u est-elle convergente?

16

- 1. Montrer que
 - $(\ln(n))^{10^9}$ est négligeable devant \sqrt{n} .
 - $-n^{10^9}$ est négligeable devant $(1,00001)^n$.
 - $(10^9)^n$ est négligeable devant n! Lorsque n tend vers +∞
- 2. Montrer que
 - $-\frac{1}{\sqrt{n}}$ est négligeable devant $\frac{1}{(\ln(n))^{10^9}}$.
 - $(0,99999)^n$ est négligeable devant $\frac{1}{n^{109}}$.
 - $-\frac{1}{n!}$ est négligeable devant $(0,9999)^n$.
- 3. Montrer que $\sqrt{n} \sqrt{2n+1} \sim (1-\sqrt{2})\sqrt{n}$ lorsque $n \to +\infty$.
- 4. Montrer que $\left(\frac{1}{n} \frac{2}{n^3}\right) \left(\sqrt{n} 1\right) \sim \frac{1}{\sqrt{n}}$ lorsque $n \to +\infty$.
- 5. Montrer que $\ln(3n^2 5\sqrt{7n + 3} + n^{\frac{2}{3}}) \sim 2\ln(n)$ lorsque $n \to +\infty$.
- 6. Montrer que $\ln\left(\frac{1}{n} \frac{3}{4\sqrt{n^2 + 5n 7}}\right) \sim -\ln(n)$ lorsque $n \to +\infty$.
- 17 Montrer que $\sqrt{1+\frac{1}{n^2}}-1\sim \frac{1}{2n^2}$ lorsque $n\to +\infty$.

18

- 1. Montrer, presque sans calcul, que $3n^3 5n^2 + 12n 1 > 0$ lorsque n est assez grand.
- 2. Montrer que la suite $u_n = \frac{1}{n} + \frac{(-1)^n}{2n}$ n'est pas monotone à partir d'un certain rang.
- Soit $u = (u_n)_{n \ge 1}$ la suite définie par $u_1 = 1$ et $u_n = \sqrt{n + u_{n-1}}$.
 - 1. Montrer que *u* est bien défini.
 - 2. Montrer que $\forall n \ge 1$, $0 \le u_n \le n$
 - 3. Montrer que $\forall n \ge 1, \sqrt{n} \le u_n \le \sqrt{2n-1}$.
 - 4. En déduire que $u_n \to +\infty$ lorsque $n \to +\infty$.
 - 5. Montrer que $\forall n \ge 1$, $\sqrt{n+\sqrt{n-1}} \le u_n \le \sqrt{n+\sqrt{2n-3}}$.
 - 6. En déduire que $u_n \sim \sqrt{n}$ lorsque $n \to +\infty$.
 - 7. Montrer que $(u_n \sqrt{n})_{n \ge 1}$ converge vers $\frac{1}{2}$.
- 20 Soit $S = (S_n)_{n \ge 1}$ la suite définie par $\forall n \ge 1$, $S_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$.
 - 1. Montrer que $\forall k \ge 2$, $\int_k^{k+1} \frac{dt}{\sqrt{t}} \le \frac{1}{\sqrt{k}} \le \int_{k-1}^k \frac{dt}{\sqrt{t}}$.
 - 2. En déduire que $2(\sqrt{n+1}-1) \le S_n \le 2(\sqrt{n})+1$.
 - 3. En déduire que $S_n \sim 2\sqrt{n}$ lorsque $n \to +\infty$.
 - 4. En déduire la limite de la suite S.
 - 5. Refaire le travail pour les suites $\left(\sum_{k=1}^n \frac{1}{k^{\alpha}}\right)_{n \geq 1}$ où $0 < \alpha < 1$.
- 21 Soit $H = (H_n)_{n \ge 1}$ la suite définie par $\forall n \ge 1, H_n = \sum_{k=1}^n \frac{1}{K}$.
 - 1. Montrer que $H_u \sim \ln(n)$ lorsque $n \to +\infty$.
 - 2. En déduire la limite de la suite H.

- 3. En déduire également l'existence d'une suite $\varepsilon = (\varepsilon_n)_{n \ge 1}$ vérifiant $\forall n \ge 1, H_n = \ln(n) + \varepsilon_n \ln(n)$, et $\varepsilon_n \to 0$ lorsque $n \to +\infty$.
 - Soit $u = (u_n)_{n \ge 1}$ la suite définie par $\forall n \ge 1, u_n = H_n \ln(n)$.
- 4. Montrer que *u* est décroissante.
- 5. En déduire que u converge vers un réel noté γ appartenant à [0,1].
- 6. En déduire l'existence d'une suite $\varepsilon' = (\varepsilon'_n)_{n \ge 1}$ vérifiant $H_n = \ln(n) + \gamma + \varepsilon'_n$ où $\varepsilon'_n \to 0$ lorsque $n \to +\infty$.
- 7. En déduire que $\sum_{k=n}^{2n} \frac{1}{k}$ converge vers ln(2) lorsque $n \to +\infty$.

2 Séries numériques

22 Etudier la nature des séries $\sum u_n$ de terme général :

$$u_n = 1 - \frac{n}{n+1}; \quad u_n = \frac{n}{n^2 + 2}; \quad u_n = \left(\arctan\left(\frac{1}{n}\right)\right)^n; \quad u_n = \arcsin\left(1 - \frac{n^3 + 1}{n^3 + 2}\right); \quad u_n = \frac{n^3}{n!};$$

$$u_n = \frac{2n - 1}{2^{2n - 1}}; \quad u_n = \frac{\ln(n^n)}{(\ln(n))^n}; \quad u_n = \frac{e^{\arctan(n)}}{n^2 + 1}.$$

23 Etudier la nature des séries $\sum u_n$ de terme général :

$$u_n = \frac{(-1)^n - 1}{n(\ln n)^2}; \quad u_n = (-1)^n \sin\left(\frac{1}{n^2}\right); \quad u_n = \frac{(-1)^n}{\sqrt{n} + (-1)^{n-1}}; \quad u_n = \frac{(-1)^{n+1} \sin(\sqrt{n})}{n^{3/2}}; \quad u_n = \frac{(-1)^{n-1} 2^n}{n^2};$$

$$u_n = \frac{(-1)^n}{n^{\frac{1}{n}} \ln n}; \quad u_n = \frac{1 + (-1)^n \sqrt{n}}{1 + n}.$$

 $\fbox{24}$ Etudier la nature et la somme (si elle existe) des séries $\sum u_n$ de terme général :

$$u_n = (-1)^n; \quad u_n = a^n; \quad u_n = \frac{1}{n(n+1)}; \quad u_n = \sqrt{n+1} - \sqrt{n}; \quad u_n = \frac{1}{\sqrt{n}}; \quad u_n = \frac{1}{n^2 - 1}; \quad u_n = \frac{(-1)^n}{\sqrt{n + (-1)^n}}; \quad u_n = \frac{1}{n^2 - 1}; \quad u_n = \frac$$

où a est un nombre réel.

25 Etudier la nature des séries $\sum u_n$ de terme général :

$$u_n = \frac{1}{n(n-1)}; \quad u_n = \frac{n!}{n^n}; \quad u_n = \tan\left(\frac{1}{2^n}\right); \quad u_n = \frac{1}{\ln(n)}; \quad u_n = \frac{1}{n+\ln(n)}; \quad u_n = \frac{1}{(3+(-1)^n)^n};$$

$$u_n = \frac{1}{2^n-1} \quad u_n = \frac{n-2\ln(n)}{n^3}; \quad u_n = \frac{1}{n^3+\operatorname{ncos}(n)}; \quad u_n = \frac{1}{n2^n}.$$

26 Etudier la convergence et la convergence absolue des séries $\sum u_n$ de terme général :

$$u_n = \frac{\cos{(n)}}{n^2}; \quad u_n = \frac{(-1)^n}{n^a} \text{ avec } a \in \mathbb{R}; \quad u_n = \frac{(-1)^n}{\ln(n)}; \quad u_n = \frac{(-1)^n}{n^2 + \sin(n)}; \quad u_n = \frac{(-1)^n}{n + (-1)^n}; \quad u_n = (-1)^n \frac{\ln(n)}{n}.$$

6

| 27 | Etudier la nature des séries $\sum u_n$ de terme général :

$$u_n = \frac{\sin^2(n)}{3^n}; \quad u_n = \frac{2 + \cos(n)}{n^{1/5}}; \quad u_n = \ln\left(1 + \frac{1}{n^{2/3}}\right);$$

$$u_n = \frac{2^n}{3^n + 1}; \quad u_n = \frac{(n!)}{(2n)!}; \quad u_n = \left(\frac{n + 2}{3n}\right)^n; \quad u_n = \frac{\sin n}{n}.$$

|28| Etudier la nature des séries $\sum u_n$ de terme général :

$$u_n = \frac{\cos(n\pi)}{n\sqrt{n}}; \quad u_n = \ln\left(1 + \frac{(-1)^n}{n}\right); \quad u_n = \frac{\cos(2n)}{n}.$$

29

- 1. Soit la série de terme général $u_n = \ln\left(1 + \frac{1}{n^2}\right)$.
 - a) Montrer que $(n+2)(n+3)u_{n+1} = 1 + (n+2)u_n$.
 - b) En déduire que $u_n \le 1/(n*(n+1))$.
 - c) Conclure sur la nature de la série considérée.
- 2. Soit la série de terme général $u_n = \ln(1 + e^{-n})$. Soit v_n tel que $u_n \ln(n!) = v_n + \ln(n)$.
 - a) Calculer v_n . Montrer que $0 \le v_n \le 1$ puis que la suite $(v_n)_{N \ge 0}$ est décroissante et convergente (sa limite, appelée gamma, est la constante d'Euler).
 - b) Montrer que $ln(n!) \le n * ln(n)$.
 - c) Conclure sur la nature de la série considérée.
- 3. Trouver la nature de $\sum \frac{1}{n(\ln(n))^{\gamma}}$ où $\gamma \in \mathbb{R}$.
- 4. Etudier la nature de la série numérique $\sum u_n$ de terme général $u_n = \frac{1}{n^{\alpha}(\ln{(n)})^{\beta}}$ où α et β sont des nombres réels.

30

- 1. Montrer que $\sum \frac{n^2}{n!}$ converge et trouver sa somme.[<u>Indication</u>: utiliser l'identité $n^2 = n(n-1) + n$).]
- 2. Montrer que $\sum \frac{n^3}{n!}$ converge et trouver sa somme.
- 3. Montrer que $\sum \ln \left(1 \frac{1}{(n+2)^2}\right)$ converge et trouver sa somme.
- 31 Trouver la nature de $\sum \frac{1!+2!+...+n!}{(n+2)!}$ et de $\sum \frac{1+\frac{1}{2}+\cdots+\frac{1}{n}}{\ln(n!)}$.

3 Intégrale définie

32 Calculer les intégrales définies suivantes :

$$\int_{3}^{4} \frac{2x-1}{(x-1)(x-2)} \, \mathrm{d}x; \quad \int_{0}^{1} \frac{x}{(x+1)(x+3)(x+5)} \, \mathrm{d}x; \quad \int_{1}^{2} \frac{3x+2}{x(x+1)^{3}} \, \mathrm{d}x; \quad \int_{0}^{1} \frac{dx}{x^{3}+1}; \quad \int_{0}^{1} \frac{x^{3}+x-1}{(x^{2}+2)^{2}} \, \mathrm{d}x; \quad \int_{2}^{3} \frac{x^{5}}{x^{3}-1} \, \mathrm{d}x.$$

33 Calculer les intégrales définies suivantes en effectuant une intégration par parties :

$$\int_0^{\pi/2} x \sin(x) \, dx; \quad \int_0^1 x \arcsin(x) \, dx; \quad \int_0^1 x \arctan(x) \, dx; \quad \int_1^2 x^2 \ln(x) \, dx; \quad \int_0^{\pi/2} x \cos^2(x) \, dx.$$

34 Calculer les intégrales définies suivantes :

$$\int_0^{\frac{\pi}{2}} \frac{\mathrm{d}x}{5 - 4\sin(x)}; \quad \int_0^{\pi/2} \frac{\cos(x)}{1 + \cos(x)} \, \mathrm{d}x; \quad \int_{\pi/4}^{\pi} \frac{\sin^2(x)}{1 + \cos^2(x)} \, \mathrm{d}x; \quad \int_0^{\pi/4} \frac{\mathrm{d}x}{\cos^4(x)}.$$

35 Calculer les primitives suivantes :

$$\int \left(x - \frac{1}{\sqrt{x}} \right) dx; \quad \int \left(x^2 + \frac{1}{x^2} \right)^2 dx; \quad \int \frac{t^{2/3} + 1}{t^{1/3}} dt.$$

 $\fbox{ }$ 1. Soit f la fonction définie sur \Bbb{R} par

$$f(x) = \frac{x - 1}{x^2 - 2x + 2}.$$

Après avoir justifié le fait que la fonction f est continue sur \mathbb{R} , déterminer la primitive de f s'annulant en 2.

2. Soit g la fonction définie sur \mathbb{R} par

$$f(x) = \frac{x+1}{\sqrt{x^2+2x+5}}.$$

Après avoir justifié le fait que la fonction g est continue sur \mathbb{R} , déterminer la primitive de g s'annulant en -1.

3. Calculer les intégrales suivantes :

$$\int_{-1}^{1} |x| \, \mathrm{d}x; \quad \int_{-2}^{2} |t^2 - 1| \, \mathrm{d}t.$$

37 Calculer les primitives et intégrales suivantes :

$$\int \frac{\tan(x)}{\cos^2(x)} \, \mathrm{d}x; \quad \int_1^{e^2} \frac{(\ln(x))^3}{x} \, \mathrm{d}x; \quad \int \frac{e^y}{1 + e^{2y}} \, \mathrm{d}y; \quad \int_0^{\pi/6} \sin(t) \cos(t) \, \mathrm{d}t; \quad \int \frac{\cos(x)}{1 + \sin^2(x)} \, \mathrm{d}x; \quad \int \frac{1}{(1 + u)^5} \, \mathrm{d}u.$$

[38] En utilisant une intégration par parties, calculer les primitives et intégrales suivantes :

$$\int xe^{-3x} dx; \quad \int (t^2+1)\sin(t) dt; \quad \int \frac{\theta}{\cos^2(\theta)} d\theta; \quad \int_0^1 t\arctan(t) dt; \quad \int_0^{\pi/2} x\cos(x) dx; \quad \int x^n \ln(x) dx$$

8

pour tout entier relatif n.

[39] En utilisant un changement de variables, calculer les primitives et intégrales suivantes :

$$\int \frac{x}{(4+x^2)^3} \, \mathrm{d}x; \quad \int \sin^5(t) \, \mathrm{d}t; \quad \int \cos^3(y) \sin^2(y) \, \mathrm{d}y; \quad \int \frac{1}{e^x + e^{-x}} \, \mathrm{d}x; \quad \int_1^e \frac{1}{t(\ln(t) + 1)} \, \mathrm{d}t; \quad \int_1^2 \frac{1}{\sqrt{u(u+2)}} \, \mathrm{d}u;$$

$$\int_0^1 \sqrt{1 - x^2} \, \mathrm{d}x; \quad \int_{-\pi/6}^0 \frac{1 + \tan^2(t)}{1 - \tan^2(t)} \, \mathrm{d}t.$$

40

1. Soit f la fonction définie sur $\mathbb{R} \setminus \{1,2,3\}$ par

$$f(x) = \frac{1}{(x-1)(x-2)(x-3)}.$$

Trouver les réels a, b et c tels que, si $x \notin \{1, 2, 3\}$ alors

$$f(x) = \frac{a}{x-1} + \frac{b}{x-2} + \frac{c}{x-3}.$$

2. En déduire les primitives def.

41 Calculer les intégrales suivantes :

$$\int_{1}^{3} \frac{\mathrm{d}x}{(4-x)^{10}}; \quad \int_{1}^{5} \sqrt{2x-1} \, \mathrm{d}x; \quad \int_{a}^{b} \frac{\ln x}{x} \, \mathrm{d}x; \quad \int_{0}^{1} \frac{(\arctan x)^{2}}{1+x^{2}} \, \mathrm{d}x; \quad \int_{0}^{1} \frac{x}{\sqrt{1-x^{4}}} \, \mathrm{d}x; \quad \int_{-2}^{-1} \frac{\mathrm{d}x}{x^{3}}; \\ \int_{0}^{1} \sqrt{|1-x|} \, \mathrm{d}x; \quad \int_{-1}^{1} e^{-3x+2} \, \mathrm{d}x; \quad \int_{0}^{2} \frac{x^{2}}{2+x^{3}} \, \mathrm{d}x; \quad \int_{0}^{4} \frac{\mathrm{d}x}{1+\sqrt{x}} \, \mathrm{d}x; \quad \int_{\ln 3}^{\ln 8} \sqrt{1+e^{x}} \, \mathrm{d}x; \quad \int_{2}^{3} \frac{x}{(x-1)(x+1)^{2}} \, \mathrm{d}x; \\ \int_{2}^{4} \frac{\mathrm{d}x}{x^{3}-1}; \quad \int_{2}^{4} \ln(x^{2}-1) \, \mathrm{d}x; \quad \int_{-1}^{1} e^{2x} \sin(3x) \, \mathrm{d}x; \quad \int_{0}^{\frac{\pi}{4}} \frac{\sin^{3}x}{\cos^{4}x} \, \mathrm{d}x; \quad \int_{0}^{\frac{\pi}{20}} \tan(5x) \, \mathrm{d}x; \quad \int_{0}^{\frac{\pi}{4}} \frac{\sin^{2}x}{\cos^{6}x} \, \mathrm{d}x.$$

42 Calculer les intégrales définies suivantes :

$$\int_{-\frac{3}{2}}^{-1} \sqrt{2t+3} \, dt; \quad \int_{-\frac{5}{2}}^{-2} \sqrt{4t^2+24t+35} \, dt; \quad \int_{-3}^{\frac{5}{2}} \sqrt{-4t^2-24t-35} \, dt; \quad \int_{0}^{1} (t^2-3t+1)e^{2t} \, dt;$$

$$\int_{0}^{1} (t^2-t-1)e^{-t} \, dt; \quad \int_{0}^{\frac{\pi}{4}} e^t \cos(4t) \, dt; \quad \int_{0}^{\frac{\pi}{2}} e^{-t} \sin(2t) \, dt; \quad \int_{0}^{1} \frac{1}{t^2-t-2} \, dt; \quad \int_{1}^{\sqrt{3}} \frac{3t-t^3}{1-3t^2} \, dt;$$

$$\int_{-1}^{0} \frac{2t}{t^3-1} \, dt; \quad \int_{-1}^{0} \frac{t}{t^4-3t^3+3t^2-3t+2} \, dt; \quad \int_{0}^{\frac{\pi}{2}} \sin^3(t) \cos^2(t) \, dt; \quad \int_{0}^{\frac{\pi}{6}} \sin^2(t) \cos^4(t) \, dt.$$

43 Calculer les intégrales définies suivantes :

$$\int_0^{\frac{\pi}{6}} \frac{1}{\cos^3(t)} dt; \quad \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{\sin(t)} dt; \quad \int_0^{\pi} \frac{1}{2 - \cos^2(t)} dt; \quad \int_0^{\frac{\pi}{2}} \frac{1}{1 + \cos(t)} dt.$$

Soit $I = (I_n)_{n \ge 0}$ la suite définie par $\forall n \ge 0, I_n = \int_0^1 \frac{x^n}{1 + x^n} dx$.

1. Montrer que pour tout $n \ge 0$, $I_n = \frac{\ln(2)}{n} - \frac{1}{n} \int_0^1 \ln(1+x^n) \, dx$. [Indication : intégration par parties.]

9

2. En déduire que $I_n \sim \frac{\ln(2)}{n}$ lorsque $n \to +\infty$.

45 Montrer que $\int_0^1 x^p (1-x)^q dx = \frac{p!q!}{(p+q+1)!}$ pour tous entiers naturels p et q.

4 Séries entières

[46] Calculer le rayon de convergence de chacune des séries entières suivantes :

$$\sum \frac{x^n}{n!}$$
; $\sum n^n x^n$; $\sum \frac{n^2 x^n}{3^n + n}$; $\sum \left(\frac{n}{n+1}\right)^{n^2} x^n$; $\sum n e^{-n} x^{2n}$; $\sum n e^{-n} x^{2n+3}$.

47 En s'aidant de développements en série entière de fonctions classiques (dont on connaît le rayon de convergence), déterminer dans chacun des cas ci-dessous, le développement de la série entière de la fonction f en précisant son rayon de convergence. Donner en fonction de l'entier n la valeur de $f^{(n)}(0)$.

$$f(x) = \frac{1}{3 - 2x}; \quad f(x) = \frac{2x - 1}{(x - 1)(x - 2)}; \quad f(x) = \ln(2x + 3); \quad f(x) = \frac{1}{\sqrt{1 - x^2}}; \quad f(x) = \arcsin x; \quad f(x) = \frac{x^2 + 1}{(x + 1)^3}.$$

48

1. Calculer le rayon de convergence et la somme de chacune des séries entières :

$$\sum_{n \ge 0} x^n; \quad \sum_{n \ge 1} n x^{n-1}; \quad \sum_{n \ge 2} n(n-1) x^{n-2}.$$

2. En déduire le rayon de convergence et la somme de chacune des séries entières suivantes :

$$\sum_{n \geq 1} \frac{3^n x^n}{2^{n+1}}; \quad \sum_{n \geq 0} (n^2 + n + 1) x^n; \quad \sum_{n \geq 0} \frac{n}{2^{2n}} x^{2n+1}.$$

49 En s'aidant de développements en série entière de fonctions classiques retrouver les fontions sommes des séries entières suivantes :

$$\sum_{n \ge 1} \frac{x^n}{n(n+1)}; \quad \sum_{n \ge 1} \frac{nx^n}{(n-1)!}; \quad \sum_{n \ge 1} (-1)^n \frac{x^{4n+1}}{4n}; \quad \sum_{n \ge 0} \frac{n^2 + n + 1}{n!} x^n.$$

50

- 1. Déterminer le rayon de convergence R de la série entière $\sum_{n\geqslant 1}f_n(x)$ où $f_n(x)=(-1)^{n+1}\frac{x^{2n+1}}{4n^2-1}$. Cette série converge-t-elle pour $x=\pm R$?
- 2. Vérifier l'égalité $\sum_{n=1} f'_n(x) = x \arctan(x)$ pour |x| < 1.
- 3. En déduire la somme $f(x) = \sum_{n \ge 1} f_n(x)$.

51 On considère la série entière $\sum_{n\geqslant 1} f_n(x)$ où $f_n(x) = \frac{1}{n+1} {2n \choose n} x^{n+1}$ de somme f(x).

- 1. Calculer son rayon de convergence.
- 2. Etablir l'égalité $\frac{2}{n+1} \binom{2n}{n} = 4 \binom{2n}{n} \binom{2n+2}{n+1}$. En déduire une équation différentielle linéaire du premier ordre vérifiée par f.
- 3. Résoudre cette équation différentielle pour obtenir l'expression de f(x) à l'intérieur de l'intervalle de convergence.

Pour chacune des équations différentielles suivantes, montrer qu'elle admet une solution f développable en série entière satisfaisant la condition donnée. On explicitera la série entière et on donnera son rayon de convergence.

10

1.
$$xy'' + 2y' - xy = 2$$
, $f(0) = 2$ et $f'(0) = 1$.

2.
$$x^2y'' + 4xy' + (2-x^2)y = 1$$
, $f(0) = \frac{1}{2}$ et $f'(0) = 0$.

53

- 1. Dans le développement en série entière de sinus, jusqu'à quel ordre suffit-il de sommer pour pouvoir approcher la valeur de $\sin(10^{-2})$ avec une incertitude de 10^{-15} ?
- 2. Rappeler le développement en série entière de $x \longrightarrow (1+x)^s$ où $s \in \mathbb{R}^*$ et la majoration de son reste quand $|s| \ge 1$. [Indication: la suite de terme général $|\binom{s}{n}|$ est décroissante.] En déduire une valeur approchée de $\sqrt[5]{33}$ à 10^{-5} près.
- 54 Trouver le développement en série entière et le rayon de convergence des série entières suivantes

$$f(x) = \ln \sqrt{\frac{1+x}{1-x}};$$
 $f(x) = \arctan \frac{1-x^2}{1+x^2};$ $f(x) = \frac{5x^3 - 2x^2 + x}{(1-2x)(1-3x)(1-x)^2}.$

55 Trouver la somme et le rayon de convergence des séries entières suivantes :

$$\sum_{1} \frac{x^{n+1}}{n(n+1)}; \quad \sum_{0} (n^2 + n + 1) x^n; \quad \sum_{0} \frac{n x^{2n+1}}{2^{2n}}; \quad \sum_{1} \frac{(-1)^n x^{4n-1}}{4n}; \quad \sum_{0} \frac{n x^n}{(n-1)!}.$$

 $\overline{\operatorname{de} n}$:

$$f(x) = \frac{1}{3 - 2x}; \quad f(x) = \frac{2x - 1}{(x - 1)(x - 2)}; \quad f(x) = \frac{x^2 + 1}{(1 + x)^3}; \quad f(x) = \frac{1}{\sqrt{1 - x^2}}; \quad f(x) = \arcsin x; \quad f(x) = e^x \cos x.$$

[57] Pour chacune des équations différentielles suivantes trouver les solutions développables en série entière :

$$-x^{2}y'' + 4xy' + (2 - x^{2})y + 1 = 0,$$

$$-xy'' + (x - 2)y' - 2y = 0,$$

$$-(1 - x^{2})y' - 2xy = 0,$$

$$-(1 + x^{2})y'' + 2xy' = 2.$$

$$- rv'' + (r-2)v' - 2v = 0$$

$$-(1-x^2)v'-2xv=0$$

$$-(1+x^2)y'' + 2xy' = 2$$

5 Séries de Fourier

- Soit f la fonction réelle 2π -périodique définie par f(x) = 0 si $-\pi < x \le 0$ et f(x) = 1 si $0 < x \le \pi$.
 - $\overline{}$ 1. Calculer la série de Fourier de f. Calculer la somme de cette série de Fourier.
 - 2. Etudier la convergence des séries suivantes et calculer leur somme :

$$\sum_{n \geq 0} \frac{(-1)^n}{2n+1}, \quad \sum_{n \geq 0} \frac{1}{(2n+1)^2}, \quad \sum_{n \geq 1} \frac{1}{n^2}, \quad \sum_{n \geq 1} \frac{(-1)^{n+1}}{n^2}.$$

- Soit f la fonction réelle 2π -périodique définie par $f(x) = 1 x^2/\pi^2$ si $-\pi < x \le \pi$.
 - 1. Calculer la série de Fourier de *f* . Calculer la somme de cette série de Fourier.
 - 2. Etudier la convergence des séries suivantes et calculer leur somme :

$$\sum_{n \geq 0} \frac{1}{(2n+1)^2}, \quad \sum_{n \geq 1} \frac{1}{n^2}, \quad \sum_{n \geq 1} \frac{1}{n^4}, \quad \sum_{n \geq 1} \frac{(-1)^{n+1}}{n^2}.$$

- Soit f la fonction réelle 2π -périodique définie par f(x) = 0 si $-\pi \le x \le 0$ et f(x) = x si $0 < x < \pi$.
 - 1. Calculer la série de Fourier de f. Calculer la somme de cette série de Fourier.
 - 2. En déduire la somme de la série $\sum_{n\geqslant 0} \frac{1}{(2n+1)^4}$.
- 61 Soit f la fonction réelle 2π -périodique définie par $f(x) = \pi x$ si $0 < x < 2\pi$ et f(0) = 0
 - 1. Calculer la série de Fourier de f. Calculer la somme de cette série de Fourier.
 - 2. Que peut-on en déduire?
- 62 Soit f la fonction réelle 2π -périodique définie par f(x) = x si $-\pi < x \le \pi$.
 - 1. Calculer la série de Fourier de f.
 - 2. Calculer la somme de cette série de Fourier en $\pi/2$ et en π .
- 63 Soit f la fonction de période 2π telle que $f(t) = |t| \operatorname{si} -\pi < t < \pi$ et $f(-\pi) = f(\pi) = 0$.
 - 1. Calculer le développement en série de Fourier de f.
 - 2. Calculer $\sum_{n\geqslant 0} \frac{1}{(2n+1)^4}$ et en déduire $\sum_{n\geqslant 1} \frac{1}{n^4}$.
- 64 f est la fonction 2π -périodique définie sur $[-\pi, \pi]$ par $f(x) = x^4 2\pi^2 x^2$.
 - 1. Calculer les coefficients de Fourier de f et exprimer son développement en série de Fourier.
 - 2. Pour chacune des fonctions 2π -périodiques suivantes justifier qu'elles sont développables en série de Fourier et écrire les développements correspondants :

$$\forall x \in [-\pi, \pi], g(x) = x^3 - \pi^2 x, \quad h(x) = 3x^2 - \pi^2 \quad \text{et} \quad i(x) = x.$$

[Indication : On pourra utiliser le théorème de dérivation.]

- Soit la fonction réelle 2π -périodique définie par $f(x) = x^2 \operatorname{si} \pi < x \le \pi$.
 - 1. Calculer la série de Fourier de f.

- 2. Calculer la somme de cette série de Fourier en 0, en $\pi/2$ et en π .
- 66 Soit f la fonction 2π -périodique impaire telle que f(0) = 0 et $f(x) = \cos(x)$ si $x \in]0,\pi[$.
 - 1. Construire le graphe de f sur $[-3\pi, 3\pi]$.
 - 2. Déterminer le développement en série de Fourier S(f) de f et donner la valeur de S(f)(x) pour tout $x \in \mathbb{R}$.
 - 3. En déduire la valeur de la somme de la série de terme général $u_n = ((2n)/(4n^2-1))^2$ pour n strictement positif.
- Soit f la fonction 10-périodique définie par f(x) = 1 si $x \in [-5,0[$ et f(x) = 3 si $x \in [0,5[$.
 - 1. Construire le graphe de f sur [-15, 15].
 - 2. Déterminer la série de Fourier S(f) de f et donner la valeur de S(f)(x) pour $x \in \mathbb{R}$.
 - 3. Déterminer la valeur de $S(f)(\pi/2)$ et en déduire la somme de la série $\sum_{n\geq 0} \frac{(-1)^n}{2n+1}$.

6 Intégrales généralisées

68 Calculer les intégrales suivantes :

$$\int_{0}^{-+\infty} \frac{\mathrm{d}x}{(1+e^{x})(1+e^{x})}; \quad \int_{1}^{-+\infty} \frac{\ln x}{x^{2}} \, \mathrm{d}x;$$

$$\int_{-a}^{-b} \frac{\mathrm{d}x}{\sqrt{(x-a)(b-x)}} o \hat{\mathbf{u}} a < b; \quad \int_{1}^{-+\infty} \frac{\mathrm{d}x}{x(x+3)}; \quad \int_{-0}^{\pi/4} \frac{\cos 2x}{\sqrt{\sin 2x}} \, \mathrm{d}x; \quad \int_{2}^{-+\infty} \frac{\mathrm{d}t}{\sqrt{t(t+1)}}; \quad \int_{0}^{-+\infty} \frac{\mathrm{d}t}{\mathrm{ch}t}$$

69 Montrer que $\int_0^{-+\infty} \frac{\ln(t)}{1+t^2} dt$ converge et qu'elle est nulle. [<u>Indication</u>: on pourra comparer les intégrales sur]0,1] et sur [1,+ ∞ [.]

- [70] Existence et calcul de $\int_1^{-+\infty} \frac{1}{t\sqrt{1+t^2}} dt$. [Indication: on pourra poser $u = \sqrt{1+t^2}$].
- 71 Pour chacune des intégrales ci-dessous, établir sa convergence :

$$I_1 = \int_0^{-+\infty} \cos(t^2) dt; \quad I_2 = \int_{-0}^{-+\infty} \frac{\sin(5t) - \sin(3t)}{t^{5/3}} dt.$$

- 72 Montrer que $\int_{-0}^{-+\infty} \frac{\sin(t)}{t}$ est semi-convergente. [Indication : utiliser la minoration $\frac{\sin^2(t)}{t} \le \left| \frac{\sin(t)}{t} \right|$].
- 73 Etudier la nature des intégrales suivantes :

$$\int_{-\frac{2}{\pi}}^{-+\infty} \ln \left(\cos \left(\frac{1}{x} \right) \right) \mathrm{d}x; \quad \int_{-0}^{-+\infty} \frac{\sin x}{x^{\alpha}} \, \mathrm{d}x \text{ où } \alpha, \beta \in \mathbb{R}; \alpha \in \mathbb{R}, \quad \int_{-0}^{-+\infty} \frac{\ln(1+x^{\alpha})}{x^{\beta}} \, \mathrm{d}x.$$

[74] Déterminer si les intégrales suivantes sont convergentes ou divergentes, et calculer, si possible, ces intégrales.

$$\begin{split} &\int_0^{-+\infty} e^{-t} \, \mathrm{d}t, \quad \int_0^{-+\infty} \frac{\mathrm{d}t}{1+t^2}, \quad \int_{-0}^1 \frac{\mathrm{d}t}{\sqrt{t}}, \quad \int_{-0}^{-+\infty} \frac{\mathrm{d}t}{t}, \quad \int_3^{-+\infty} \frac{\mathrm{d}t}{t^\alpha}, \quad \int_{-0}^3 \frac{\mathrm{d}t}{t^\alpha}, \quad \int_{-0}^1 \ln(t) \, \mathrm{d}t, \quad \int_{-1}^0 \frac{t \, \mathrm{d}t}{(1-t)^2}, \\ &\int_0^{-\pi/2} \tan(t) \, \mathrm{d}t, \quad \int_0^{-+\infty} \frac{t \, \mathrm{d}t}{(1+t)^2}, \quad \int_0^{-+\infty} \frac{\arctan(t) \, \mathrm{d}t}{1+t^2} \\ &\text{où } \alpha \in \mathbb{R}. \end{split}$$

75 Déterminer si les intégrales suivantes sont convergentes ou divergentes :

$$\int_{-0}^{1} \frac{\sqrt{x}}{\sin(x)} dx; \quad \int_{-0}^{-\infty} x^{\alpha} e^{-2x} dx, \quad \int_{-0}^{1} \frac{1 - e^{x} + 3\sin(x)}{x^{2}} dx$$

où $\alpha \in \mathbb{R}$.

| 76 | Montrer que les intégrales suivantes sont absolument convergentes :

$$\int_{-0}^{1} \ln(t) \sin\left(\frac{1}{t}\right) dt; \quad \int_{-0}^{-+\infty} t e^{-t^2} \left(t^2 \sin(t) - \cos\left(\frac{1}{t}\right)\right) dt.$$

Soient $I = \int_0^{-\pi/2} \ln(\cos(x)) dx$ et $J = \int_{-0}^{\pi/2} \ln(\sin(x)) dx$. 1. Montrer que J converge.

- 2. Montrer que $I=J.[\underline{\text{Indication}}: \text{On pourra changer } x \text{ en } \frac{\pi}{2}-x].$
- 3. Montrer que $I + J = -\frac{\pi}{2} \ln(2) + \int_{-0}^{\pi/2} \ln(\sin(2x)) dx$. 4. En déduire que $I = J = -\frac{\pi}{2} \ln(2)$.

Intégrales à paramètre

- [78] Soient $f(t) = \int_0^1 \frac{e^{-t^2(1+x^2)}}{1+x^2} dx$ et $g(t) = \int_0^t e^{-x^2} dx$. 1. Montrer que $\forall t \in \mathbb{R}, \ f(t) + g^2(t) = \frac{\pi}{4}$.

 - 2. En déduire la valeur de $I = \int_0^{\infty} e^{-x^2} dx$.

79

1. Soit f la fonction définie pour (t, x) dans $[0, 1] \times [0, 1]$ par

$$f(t,x) = \begin{cases} \frac{xt}{(x^2 + t^2)^2} & \text{si } (t,x) \neq (0,0) \\ 0 & \text{si } (t,x) = (0,0). \end{cases}$$

- (a) Montrer que pout tout x dans [0,1], l'application $t \to f(t,x)$ est continue sur [0,1], et que pour tout t dans [0,1], l'application $x \to f(t,x)$ est continue sur [0,1].
- (b) Montrer que $F(x) = \int_0^1 f(t, x) dt$ est définie pour tout x dans [0, 1] et calculer sa valeur.
- (c) F est-elle continue sur [0,1]?
- (d) Les hypothèses du théorème de continuité sous le signe somme sont-elles vérifiées ?
- 2. Mêmes questions pour la fonction f définie pour (t, x) dans $[0, 1] \times [0, 1]$ par

$$f(t,x) = \begin{cases} \frac{xt}{\sqrt{x^2 + t^2}} & \text{si } (t,x) \neq (0,0) \\ 0 & \text{si } (t,x) = (0,0) \end{cases}$$

3. Mêmes questions pour la fonction f définie pour (t, x) dans $[0, 1] \times [0, 1]$ par

$$f(t,x) = \begin{cases} \frac{xt}{x^2 + t^2} & \text{si } (t,x) \neq (0,0) \\ 0 & \text{si } (t,x) = (0,0) \end{cases}$$

80 On pose

$$F(x) = \int_{-\infty}^{-+\infty} e^{-t^2/2} \cos x t \, \mathrm{d}t$$

- 1. Montrer que F est de classe C^1 sur \mathbb{R} .
- 2. Montrer que F est solution d'une équation différentielle linéaire du premier ordre.

81

- 1. Montrer que l'application φ définie sur]1, $+\infty$ [par $\varphi(x) = \int_0^\pi \frac{1}{x \cos(t)} dt$ est continue sur tout intervalle [a, b] tel que 1 < a < b.
- 2. Soient $\varphi_1(x) = \int_0^{\pi/2} \frac{1}{x \cos(t)} dt$ et , $\varphi_2(x) = \int_{\pi/2}^{\pi} \frac{1}{x \cos(t)} dt$.
 - (a) Montrer que $\varphi_2(x) = \int_0^{\pi/2} \frac{1}{x + \sin(t)} dt$.
 - (b) Montrer que $\varphi_1(x) = \int_0^1 \frac{2 du}{u^2(1+x)+x-1}$.
 - (c) Montrer que $\varphi_2(x) = \int_0^1 \frac{2 du}{x \cdot u^2 + 2u + x}$.
 - (d) En déduire la valeur de $\varphi_1(x)$.
 - (e) En déduire la valeur de $\varphi_2(x)$.
 - (f) Montrer que $\varphi(x) = \frac{\pi}{\sqrt{x^2 1}}$.

82 Pour *x* réel positif, on note $F(x) = \int_{-0}^{-+\infty} \frac{x \cos(t)}{x^2 + t^2} dt$.

- 1. Montrer que la fonction F est définie sur \mathbb{R}_+ et continue sur \mathbb{R}_+^* .
- 2. Montrer que $\forall x \in \mathbb{R}_+^*$, $\int_0^{-+\infty} \frac{x}{x^2 + t^2} dt = \frac{\pi}{2}$.
- 3. Montrer que $\int_0^{\to +\infty} \frac{1-\cos(t)}{t^2} dt$ converge.
- 4. Montrer que $\forall x \in \mathbb{R}_+^*, |F(x) \frac{\pi}{2}| \le x \int_0^{\to +\infty} \frac{1-\cos(t)}{t^2} \, \mathrm{d}t$ et en déduire la limite de F en 0.

83

- 1. Montrer que $F(x) = \int_{-0}^{+\infty} e^{-(t^2 + \frac{x^2}{t^2})} dt$ définit une fonction F continue sur \mathbb{R} et dérivable sur \mathbb{R}^* .
- 2. Montrer que $\forall x \in \mathbb{R}_+^*, F'(x) = -2F(x)$.
- 3. En déduire explicitement F(x) en fonction de x pour tout x réel.

84 Pour *x* réel, on pose $\Gamma(x) = \int_{-0}^{-+\infty} e^{-t} t^{x-1} dt$.

- 1. Déterminer l'ensemble D de définition de Γ.
- 2. i) Montrer que $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$ si $\alpha > 0$.
 - ii) En déduire que $\Gamma(n+1) = n!$ si n est un entier naturel non-nul.
- 3. Montrer que Γ est de classe C^{∞} sur D et que $\forall n \in \mathbb{N}, \Gamma^{(n)}(x) = \int_{-\infty}^{-+\infty} (\ln(t))^n e^{-t} t^{x-1} dt$.
- 4. Montrer que Γ' est strictement croissante sur D. Montrer qu'il existe un unique réel x_0 de]1,2[tel que $\Gamma'(x_0) = 0$. En déduire les variations de Γ sur D.

Soit $F(x) = \int_{-0}^{-+\infty} \frac{\sin(t)}{t} e^{-tx} dt$.

- 1. Montrer que F est définie sur $[0 + \infty[$ et que $\lim_{x \to +\infty} F(x) = 0$. [<u>Indication</u>: On pourra majorer |F(x)| par $\frac{1}{x}$.]
- 2. Montrer que F est continue et dérivable sur $]0, +\infty[$.
- 3. Montrer que $\forall x \in]0, +\infty[, F'(x) = \frac{-1}{1+x^2}$ et que $F(x) = \frac{\pi}{2} \arctan(x)$.
- 4. Admettant que F est continue également en 0, déduire des résultats précédents la valeur de $\int_{-0}^{-+\infty} \frac{\sin(t)}{t} dt$.

8 Transformation de Laplace

- Montrer que $\mathcal{L}(t^{\alpha-1})(p)$, où $\alpha > 0$, existe si $\Re e(p) > 0$. On admettra que $\mathcal{L}(t^{\alpha-1})(p) = \Gamma(\alpha)/p^{\alpha}$.
- [87] Calculer $\mathcal{L}(\sin(t))(p)$ et $\mathcal{L}(\cos(t))(p)$ si $\Re(p) > 0$.
- 88 Calculer $\mathcal{L}(e^{\alpha t})(p)$ si $\Re e(p) > \alpha$.
- Montrer que, si a est un nombre réel strictement positif alors

$$\mathcal{L}(f(at))(p) = (1/a)\mathcal{L}(f(t))(p/a).$$

En déduire $\mathcal{L}(\sin(\omega t))(p)$ et $\mathcal{L}(\cos(\omega t))(p)$.

On suppose que f est dérivable et que $\mathcal{L}(f(t))(p)$ et $\mathcal{L}(f'(t))(p)$ existent si $\Re e(p) > a$. Montrer que

$$\mathcal{L}(f(t))(p) = p\mathcal{L}(f(t))(p) - f(0^+).$$

91 On suppose que f est deux fois dérivable et que $\mathcal{L}(f(t))(p)$, $\mathcal{L}(f'(t))(p)$ et $\mathcal{L}(f''(t))(p)$ existent si $\Re e(p) > a$. Montrer que

$$\mathcal{L}(f''(t))(p) = p^2 \mathcal{L}(f(t))(p) - pf'(0^+) - f(0^+).$$

92 Utiliser les résultats précédents pour résoudre les équations différentielles suivantes.

$$y' + y = \sin(t), y(0) = 1;$$
 $y'' + 3y' + 2y = \sin(t), y(0) = 1, y'(0) = 0;$ $y'' + y' - 2y = e^{-2t}, y(0) = 0, y'(0) = 1.$

Soit f une fonction définie sur \mathbb{R} , nulle sur \mathbb{R}^* . Dans chaque cas suivant calculer $\mathcal{L}g$ en fonction de $\mathcal{L}f$.

1.
$$g(t) = \begin{cases} f(at-b) & \text{si } t > b/a \\ 0 & \text{sinon} \end{cases}$$
 où $(a,b) \in \mathbb{R}_+^*$.

- 2. $g(t) = e^t f(t)$.
- 3. $g(t) = f(\frac{t}{a})$ où a > 0.
- 4. g(t) = f(t) + 1.
- Résoudre l'équation différentielle suivante à l'aide de la transformation de Laplace et du tableau des transformées classiques. y'' + y = t sous les conditions initiales y(0) = 0 et y'(0) = 2

9 Annales

ANNÉE: 2007/2008

Date: samedi 20 octobre 2007

Documents et téléphones mobiles interdits

Epreuve de G. Ricotta

Les trois exercices sont indépendants. L'énoncé comporte 2 pages.

Exercice 1. Trouver et justifier soigneusement la nature des séries suivantes.

1.

$$\sum \log \left(1 + \frac{n^3 - 4}{2(n-1)(n^2 - 2)} \right)$$

Devoir surveillé 1 UE: PNG301

Durée: 1h20

où log désigne le logarithme népérien.

2.

$$\sum \frac{\sin(2n)\left(\log(n)\right)^{10}}{n^{\frac{3}{2}}}.$$

3.

$$\sum \frac{(-1)^n}{\sqrt{n}\left(\log\left(n\right)\right)^{10}}.$$

4.

$$\sum \frac{\left(\log\left(n\right)\right)^{10}}{n}.$$

Exercice 2. Considérons l'équation différentielle

(E)
$$3xy' + (2-5x)y = x$$
.

Soit $f(x) = \sum_{n \ge 0} a_n x^n$ une éventuelle solution de (E) développable en série entière au voisinage de 0.

1. Montrer que la suite $(a_n)_{n\geqslant 0}$ vérifie

$$a_0 = 0,$$
 $a_1 = \frac{1}{5},$
 $a_n = \frac{5}{3n+2}a_{n-1}$

pour tout entier naturel $n \ge 2$.

2. En déduire par récurrence sur n que

$$a_n = \frac{5^{n-1}}{\prod_{k=1}^n (3k+2)}$$

pour tout entier naturel $n \ge 1$.

3. Trouver le rayon de convergence de la série entière réelle

$$\sum_{n \ge 1} \frac{5^{n-1}}{\prod_{k=1}^{n} (3k+2)} x^n.$$

4. L'équation différentielle (E) admet-elle une solution développable en série entière? Si oui, laquelle et sur quel intervalle?

Exercice 3. Soit $f:]-\infty,2]\to\mathbb{R}$ la fonction définie par

$$f(x) = \sqrt{(2-x)}$$

pour tout nombre réel $x \leq 2$. Soit $(u_n)_{n \geq 1}$ la suite définie par $u_1 = 0$ et

$$u_{n+1} = f(u_n)$$

pour tout entier naturel $n \ge 1$.

- 1. Trouver le tableau de variations de la fonction f sur l'intervalle $]-\infty,2]$.
- 2. Tracer sur le même dessin l'allure du graphe de la fonction f et de la droite d'équation y = x. Représenter sur ce dessin les premiers termes de la suite $(u_n)_{n\geqslant 1}$. Pensez-vous que la suite $(u_n)_{n\geqslant 1}$ converge? Si oui, vers quelle limite?
- 3. Montrer par récurrence sur n que

$$0 \leqslant u_n \leqslant \sqrt{2}$$

pour tout entier naturel $n \ge 1$.

4. Montrer que

$$|u_{n+1} - 1| = \frac{|u_n - 1|}{\sqrt{(2 - u_n)} + 1}$$

pour tout entier naturel $n \ge 1$.

5. En déduire en justifiant votre réponse que

$$|u_{n+1} - 1| \le \frac{1}{\sqrt{(2 - \sqrt{2})} + 1} |u_n - 1|$$

pour tout entier naturel $n \ge 1$.

6. Montrer par récurrence sur n que

$$|u_n - 1| \le \left(\frac{1}{\sqrt{(2-\sqrt{2})}+1}\right)^{n-1} |u_1 - 1|$$

pour tout entier naturel $n \ge 1$.

7. Trouver la limite de la suite $(u_n)_{n\geqslant 1}$ en justifiant soigneusement votre réponse.

FIN

Année 2007/2008 Samedi 10 novembre 2007 Documents et téléphones mobiles interdits Epreuve de F.Levron Devoir surveillé n°2 UE : PNG301 durée : 1h20

Les trois exercices sont indépendants. L'énoncé comporte 1 page.

Exercice 1

On considère la fraction rationnelle $f(x) = \frac{x}{(x+1)(x^2+1)}$.

- 1) Mettre cette fonction sous la forme : $f(x) = \frac{a}{x+1} + \frac{bx+c}{x^2+1}$
- 2) Soit $F(x) = \int_0^x f(t)dt$. Calculer F(x).
- 3) Si x tend vers $+\infty$, est-ce que F(x) tend vers une limite? Si oui, vers laquelle?

Exercice 2

On considère la fonction f(x) périodique, de période 2π , telle que $f(x)=\sin(x/2)$ si $0 \le x < 2\pi$.

- 1) Tracer sommairement le graphe de cette fonction sur l'intervalle $[-4\pi, 4\pi]$.
- 2) Montrer que f est une fonction paire.
- 3) Calculer les coefficients de Fourier de f. Aide : on rappelle que sin(a+b)+sin(a-b)=2sin(a)cos(b).
- 4) Soit S(x) la somme de la série de Fourier de f en x.

Montrer que
$$S(x) = \frac{2}{\pi} + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{\cos(nx)}{(1/4 - n^2)}$$
.

- 5) Quelle est la relation entre S(x) et f(x)?
- 6) Calculer $S(\pi)$ et en déduire la valeur de $\sum_{n=1}^{\infty} \frac{(-1)^n}{4n^2-1}$.
- 7) Calculer $\sum_{n=1}^{\infty} \frac{1}{(1/4-n^2)^2}$.

Exercice 3

Soit $f(x) = \arctan\left(\frac{1+x}{1-x}\right)$, où $x \ne 1$.

- 1) Calculer la dérivée de f(x).
- 2) En déduire le développement en série entière de f(x).
- 3) Quel est le rayon de convergence de cette série ?
- 4) Peut-on simplifier l'expression de f(x) si $x \ne 1$?

ANNEE UNIVERSITAIRE 2007/2008

Session 1 d'automne

UE: PNG301

Date: 21 décembre 2007 Durée: 3h

Documents non autorisés

Epreuve de M. Olivier

Les cinq exercices sont indépendants. L'énoncé comporte trois pages.

Barème indicatif: 2 points par question, puis lissage.

Exercice 1.

Trouver et justifier la nature des séries

$$\sum_{n \geq 1} \frac{3 + \ln n}{(n+3)^2}, \quad \sum_{n \geq 2} \frac{(-1)^n}{(n+1) \ln n}, \quad \sum_{n \geq 0} \frac{\sin n \operatorname{Arctan}(n^2+1)}{n^2+1}.$$

Exercice 2.

On considère l'équation différentielle suivante :

$$x^2y'' - 4xy' + (x^2 + 6)y = 0.$$

On cherche les solutions développables en série entière autour de x=0 de cette équation différentielle.

Soit $y = \sum_{n>0} a_n x^n$ une telle solution.

- 1. Démontrer que $a_0 = a_1 = 0$.
- **2.** Démontrer que pour tout $n \ge 2$, on a (n-2)(n-3) $a_n = -a_{n-2}$.
- **3.** En déduire que a_2 et a_3 sont quelconques.
- **4.** Montrer que pour tout $n \ge 1$, $a_{2n} = \frac{(-1)^{n-1}}{(2n-2)!}a_2$, et que $a_{2n+1} = \frac{(-1)^{n-1}}{(2n-1)!}a_3$.
- 5. Quel est le rayon de convergence de la série entière obtenue ?
- **6.** En déduire que la solution générale de l'équation différentielle donnée est $y = a_2 x^2 \cos x + a_3 x^2 \sin x$.

Exercice 3.

Soit f la fonction périodique de période 2π , telle que pour $x \in]-\pi, +\pi]$, $f(x) = x \sin x$.

- 1. Dessiner sommairement le graphe de f sur l'intervalle $[-3\pi, +3\pi]$
- **2.** Que valent les coefficients b_n de la série de Fourier de f?
- **3.** Calculer a_0 .
- **4.** Calculer a_1 .
- **5.** Montrer que pour $n \ge 2$ on a : $\sin x \cos nx = \frac{1}{2} (\sin(n+1)x + \sin(1-n)x)$.
- **6.** Calculer pour $n \geq 2$, le coefficient a_n .
- 7. Soit S(f)(x) la valeur de la série de Fourier de f au point x. Que vaut S(f)(x) (justifier)?
- 8. En prenant x = 0, calculer $\sum_{n \geq 2} \frac{(-1)^n}{n^2 1}$.
- **9.** En prenant $x = \pi$, calculer $\sum_{n \geq 2} \frac{1}{n^2 1}$.
- **10.** En utilisant un théorème du cours, calculer $\sum_{n\geq 2} \frac{1}{(n^2-1)^2}$.

Exercice 4. (Les questions 1 et 2 suivantes sont indépendantes).

1. Au moyen de changements de variable ou d'intégrations par partie, calculer les intégrales suivantes et dire pour quelles valeurs de la variable x elles sont définies :

$$\int \frac{x}{x^4 - x^2 - 2} \, dx, \qquad \int \frac{\cos^3 x}{\sin^5 x} \, dx.$$

2. Pour $n \in \mathbb{N}$, $n \ge 1$, on pose

$$I_n = \int_0^\pi \frac{dx}{1 + \sin^2(nx)}.$$

a. A l'aide d'un changement de variable, démontrer que

$$I_n = \frac{1}{n} \sum_{0 \le k \le n-1} \int_{k\pi}^{(k+1)\pi} \frac{dt}{1 + \sin^2 t}.$$

b. Démontrer que pour tout k tel que $0 \le k \le n-1$ on a

$$\int_{k\pi}^{(k+1)\pi} \frac{dt}{1+\sin^2 t} = I_1.$$

- **c.** En déduire que $I_n = I_1$.
- **d.** Calculer I_1 et par conséquent I_n .

Exercice 5.

On considère la fonction f de deux variables x et t définie sur le domaine $\mathbb{R} \times [0, \frac{\pi}{2}]$ par

$$f(x,t) = \begin{cases} \frac{\arctan(x \sin t)}{\sin t} & \text{si } t \neq 0, \\ x & \text{si } t = 0. \end{cases}$$

Soit enfin $g(x) = \int_0^{\pi/2} f(x, t) dt$.

On admettra dans la suite sans démonstration toutes les propriétés de continuité et de dérivabilité nécessaires pour justifier les calculs.

- 1. Calculer $\frac{\partial f}{\partial x}(x,t)$ pour tout (x,t) dans le domaine de définition de f. On veillera à calculer séparément $\frac{\partial f}{\partial x}(x,0)$.
- **2.** Montrer que g est dérivable sur \mathbb{R} et calculer g'(x).
- **3.** Que vaut g(0)? En déduire g(x) pour tout $x \in \mathbb{R}$.

FIN

SESSION 2 D'AUTOMNE

UE: PNG301

Licence

ETAPE: MEC3, PHQ3, SCP3, EEA3, CSB5

Epreuve : Mathématiques

Date: Heure: Durée: 3h

Documents: non autorisés

Epreuve de M J.L. Artigue et Me G. Godinaud

Exercice 1 : Soit l'équation différentielle

$$(E) \left\{ \begin{array}{l} (x^2 + 1)y'' - 2y = 0 \\ y(0) = 0 , \ y'(0) = 1 \end{array} \right.$$

- 1. Montrer qu'il existe une fonction f, développable en série entière au voisinage de 0 qui vérifie (E). On a donc $f(x) = \sum a_n x^n$, les coefficients a_n vérifiant une relation de récurrence que l'on déterminera.
- 2. Donner l'expression générale des a_n et déterminer le rayon de convergence R de cette série
- (a) Rappeler le développement en série entière de $\arctan(x)$.
 - (b) A partir de son développement en série entière, calculer la fonction f(x) solution de l'équation différentielle (E).

Exercice 2: Soit le réel λ tel que $0 < \lambda < 2\pi$. On définit la fonction f_{λ} 2π -périodique de la façon suivante

$$f_{\lambda}(x) = \begin{cases} +1 & \text{si } 0 \le x < \lambda \\ -1 & \text{si } \lambda \le x < 2\pi \end{cases}$$

- 1. Tracer f_{λ} sur $[-3\pi, +3\pi]$.
- 2. Déterminer la série de Fourier de f_{λ} .
- 3. Etudier la convergence de la série de Fourier de f_{λ} .
- 4. Calcular $\sum_{n=1}^{+\infty} \frac{\sin n\lambda}{n}$.
- 5. Calculer $\sum_{n=1}^{+\infty} \frac{(-1)^n \sin n\lambda}{n}$. Discuter en fonction des valeurs de λ .
- 6. En déduire $\sum_{n=1}^{+\infty} (\frac{\sin n(\lambda/2)}{n})^2$, en utilisant Parceval-Bessel

Exercice 3:

- 1. Calculer les réels a, b et c tels que $\forall x \in [0, 1], \quad \frac{1}{(x+1)(x^2+1)} = \frac{a}{x+1} + \frac{bx+c}{x^2+1}$
- 2. Calculer l'intégrale $\int_0^1 \frac{1}{(x+1)(x^2+1)} dx$.
- 3. En déduire la valeur de l'intégrale $\int_0^{\frac{\pi}{2}} \frac{\sin(t)}{(\cos(t)+1)(2-\sin^2(t))} dt$ en utilisant un changement de variable.

Exercice 4: Pour tout réel x, on pose $F(x) = \int_0^1 \frac{t \sin((1+t^2)x)}{1+t^2} dt$.

- 1. Calculer F(0). Montrer que F est impaire et continue sur \mathbb{R} .
- 2. Montrer que F est dérivable sur tout intervalle $[a, +\infty[$ avec a > 0. Pour tout x > 0, exprimer F'(x) en fonction de x sans intégrale.
- 3. En utilisant un changement de variable, montrer que pour tout réel x non nul $F(x) = \frac{1}{2} \int_{x}^{2x} \frac{\sin(u)}{u} du$ et retrouver l'expression de F'(x).
- 4. (a) Ecrire le développement en série entière de ϕ , définie sur \mathbb{R} par $\phi(x) = \sin(2x) \sin(x)$. En déduire que g définie par $g(x) = \frac{\phi(x)}{2x}$ si $x \neq 0$ et $g(0) = \frac{1}{2}$, admet un développement en série entière que l'on exprimera et dont on donnera le rayon de convergence.
 - (b) Donner le développement en série entière de G, primitive de g sur \mathbb{R} telle que G(0)=0. Quel est le rayon de convergence de cette série entière?
- 5. (a) Montrer que $\exists k \in \mathbb{R}, \ \forall x \in \mathbb{R}_+^*, \ F(x) = G(x) + k$. En déduire que $\forall x \in \mathbb{R}, F(x) = G(x)$.
 - (b) Pourquoi F est-elle C^{∞} sur \mathbb{R} ? Pour tout entier naturel n, donner l'expression de $F^{(n)}(0)$. (On pourra distinguer les cas où n est impair de ceux où il est pair).

Année : 2008/2009 Université Bordeaux 1

Contrôle continu no 1 UE: PNG 301

Documents non autorisés

Responsable de l'épreuve : M. Olivier

Les trois exercices sont indépendants. L'énoncé comporte une page.

Exercice 1.

Trouver et justifier la nature des séries

$$\sum_{n\geq 3} \frac{(n+1) \ln \ln n}{(n^3+3) (\ln n)^2}, \quad \sum_{n\geq 3} \frac{(-1)^n}{\sqrt{n} (\ln \ln n)^3}, \quad \sum_{n\geq 1} \frac{\sin(\theta n) (\ln n)^5}{(n^2+2)}, \text{ pour } \theta \in \mathbb{R}.$$

Exercice 2. On considère l'équation différentielle

$$xy'' + y' + xy = 0.$$

Démontrer qu'il existe une et une seule solution de cette équation différentielle développable en série entière autour de x = 0 et telle que y(0) = 1. Calculer le rayon de convergence de cette série entière.

Exercice 3.

Calculer les intégrales définies suivantes :

$$\int_0^1 \frac{\arctan x}{1+x^2} \, dx, \quad \int_0^{\pi/2} (x+1) \cos 3x \, dx.$$

ANNÉE: 2008/2009

DS2

UE: PNG301

Durée: 1h30

Date: samedi 29 novembre 2008

Documents non autorisés Epreuve de G. Ricotta

Les trois exercices sont indépendants. L'énoncé comporte 1 page.

Exercice 1. Trouver et justifier la nature des intégrales généralisées

$$\int_{-0}^{1/3} \frac{\ln(x+2)}{\sqrt{x}(\ln(x))^3}, \quad \int_{2}^{-+\infty} \frac{\sin(3x)(\ln x)^5}{x^2+2}.$$

Exercice 2. Considérons la fraction rationnelle

$$R(x) = \frac{5x - 3}{(x^2 + 3x + 3)^2}.$$

- 1. Montrer que R est une fonction continue sur \mathbb{R} .
- 2. Montrer qu'il existe des constantes réelles a et b telles que

$$\forall x \in \mathbb{R}, \quad R(x) = a \times \frac{2x+3}{(x^2+3x+3)^2} + \frac{b}{(x^2+3x+3)^2}.$$

- 3. Trouver toutes les primitives de $\frac{2x+3}{(x^2+3x+3)^2}$ sur \mathbb{R} .
- 4. Calculer $\int \frac{dt}{(t^2+1)^2}$. Indication : faire une intégration par parties à partir de $\int \frac{dt}{t^2+1}$.
- 5. Trouver toutes les primitives de R sur \mathbb{R} .

Exercice 3. Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction impaire et 2π -périodique définie par

$$\forall x \in [0, \pi], \quad f(x) = x(\pi - x).$$

- 1. Tracer l'allure du graphe de f sur $[-3\pi, +3\pi].$
- 2. Déterminer la série de Fourier formelle S(f)(x) de f.
- 3. Donner les raisons pour lesquelles

$$\forall x \in [0, \pi], \quad x(\pi - x) = S(f)(x).$$

- 4. Montrer que $\sum \frac{(-1)^n}{(2n+1)^3}$ converge et en déduire (à partir des questions précédentes) sa somme.
- 5. Montrer que $\sum \frac{1}{(2n+1)^6}$ converge et calculer sa somme.

FIN

Année universitaire: 2008/2009

Session d'automne 2008

UE: PNG301

Epreuve: Mathématiques

Date: 22 décembre 2008 Durée: 3 heures

Documents non autorisés

Responsable de l'épreuve : M. F. Levron

Les six exercices sont indépendants. L'énoncé comporte trois pages.

Dans tous les exercices, ln(x) désigne le logarithme népérien de x.

Exercice 1.

On considère la série numérique dont le terme général est $u_n = \frac{n+1}{n+2} - \frac{n}{n+1}$, où $n \ge 0$.

- 1. Calculer les sommes partielles de cette série.
- 2. En déduire la convergence et la valeur de la somme de cette série.

Exercice 2.

- 1. Montrer que, si n tend vers l'infini, $\sqrt{n^2+1}-n$ est équivalent à $\frac{1}{2n}$.
- **2.** La série $\sum_{n\geq 0} (\sqrt{n^2+1}-n)$ est-elle convergente?
- **3.** La série $\sum_{n\geq 0} (-1)^n (\sqrt{n^2+1}-n)$ est-elle convergente?
- **4.** Montrer que, pour tout x réel, $\sin(n\pi + x) = (-1)^n \sin(x)$.
- 5. En déduire que la série $\sum_{n\geq 0} \sin(\pi\sqrt{n^2+1})$ est convergente.

Exercice 3.

On considère l'équation différentielle suivante :

$$(1-x^2)y' = xy + 1, \quad y(0) = 0.$$

On cherche la solution y(x) sous la forme d'une série entière $y(x) = \sum_{n>0} a_n x^n$.

- 1. Calculer les quatre premiers coefficients de cette série et déterminer une relation de récurrence permettant de calculer tous les coefficients.
- **2.** Donner une expression de a_n suivant la parité de n.
- 3. Quel est le rayon de convergence de cette série entière?
- 4. Vérifier que $y(x) = \frac{\operatorname{Arcsin}(x)}{\sqrt{1-x^2}}$ est la solution de cette équation différentielle.
- **5.** En déduire, par intégration, le développement en série entière autour de 0, de $(Arcsin(x))^2$.

Exercice 4.

On considère la fonction f(x) périodique de période $T=2\pi$ telle que $f(x)=\frac{x^2}{\pi^2}$ si $x\in [-\pi,\pi[$.

- 1. Tracer sommairement le graphe de y = f(x) si $x \in [-3\pi, 3\pi]$.
- **2.** Calculer les coefficients de Fourier de f(x).
- **3.** Expliciter la somme S(f)(x) de la série de Fourier de f(x). Quel est le lien entre S(f)(x) et f(x)?
- **4.** Déterminer S(f)(0) et $S(f)(\pi)$. Que peut-on en conclure?
- **5.** En utilisant cette série de Fourier, calculer $\sum_{n\geq 1} \frac{1}{n^4}$.

Exercice 5.

On considère l'intégrale généralisée $I = \int_0^1 \frac{\ln(x)}{\sqrt{1-x}} dx$.

Le but est de montrer que cette intégrale converge et de calculer sa valeur. Soit $f(x) = \frac{\ln(x)}{\sqrt{1-x}}$.

- 1. Donner une primitive de ln(x).
- **2.** Déterminer un nombre $a \in]0,1[$ tel que $|f(x)| \le 2|\ln(x)|$ si $x \in]0,a[$.
- **3.** Déterminer un nombre $b \in]0,1[$ tel que $|f(x)| \le 2\sqrt{1-x}$ si $x \in [b,1[$.
- 4. En déduire que l'intégrale converge.
- 5. Calculer I en effectuant le changement de variable $u = \sqrt{1-x}$.

Exercice 6.

Soit
$$f(x) = \int_0^1 \frac{e^{-(1+t^2)x^2}}{1+t^2} dt$$
 et soit $g(x) = \int_0^x e^{-t^2} dt$, où x est réel.

- 1. Montrer que les fonctions f et g sont définies et continues sur l'ensemble des réels.
- **2.** Calculer f(0) et $\lim_{x\to+\infty} f(x)$.
- 3. Montrer que f(x) est dérivable et calculer f'(x) en fonction de g(x) et g'(x).
- **4.** En déduire une expression de f(x) en fonction de g(x).
- 5. En déduire la valeur de $\int_0^\infty e^{-t^2} dt$.

FIN

Département de Licence

ANNEE 2008-2009

SESSION DE JANVIER 2009

UE: PNG301

Epreuve de : Mathématiques

L.Nikolskaia

Date:08.06.2009

Durée: 3h

Documents : non autorisés

Problème

Première partie

1. Montrer que les séries

$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{nn!} \quad (1) \quad et \quad \sum_{n=1}^{\infty} (-1)^n \frac{2^n}{nn!} \quad (2)$$

convergent. On note C_1 et C_2 les sommes des séries (1) et (2) respectivement.

- 2. Donner le développement en sèrie entiére de la fonction e^{-x} et préciser le rayon de convergence.
- 3. Enoncer le théorème d'intégration des séries entières.
- 4. Appliquer ce théorème pour montrer que

$$\int_{1}^{2} \frac{e^{-x}}{x} dx = \ln 2 + C_2 - C_1. \quad (*)$$

5. Montrer que la fonction F définie sur R par

$$F(t) = \int_{1}^{2} \frac{e^{-tx}}{x} dx$$

est dérivable sur R et donner, pour tout $t \in R$, l'expression explicite de F'(t).

- 6. Donner les valeurs exactes de F(0) et F'(0).
- 7. Développer la fonction F' en série entière et préciser le rayon de convergence.
- 8. En déduire le développement en série entière de la fonction F.
- 9. Retrouver l'égalité

$$\int_{1}^{2} \frac{e^{-x}}{x} dx = \ln 2 + C_2 - C_1 \quad (*)$$

.

Deuxième partie

10. Montrer que, pour Re(p) > 0, l'intégrale

$$\int_0^\infty \frac{e^{-2t} - e^{-t}}{t} e^{-pt} dt$$

converge.

11. On rappelle que la fonction F est définie sur R par $\int_1^2 \frac{e^{-tx}}{x} dx$. Déduire de la question 10 que les fonctions ϕ et ψ définies par

$$\phi(t) = \left\{ \begin{array}{l} F'(t) \ , t \geq 0 \\ 0 \ , t < 0 \end{array} \right., \quad \psi(t) = \left\{ \begin{array}{l} F(t), \ t \geq 0 \\ 0, \ t < 0 \end{array} \right.$$

admettent la transformation de Laplace.

12. On note $\overline{\phi}$ la transformée de Laplace de ϕ et $\overline{\psi}$ la transformée de Laplace de ψ . En sachant que, pour $t \neq 0$, $\psi'(t) = \phi(t)$, montrer l'égalité

$$p\overline{\psi}(p) = \overline{\phi}(p) + \ln 2.$$

13. En déduire (en utilisant la formule $\frac{\overline{\phi}(p)}{p} \div \int_0^t \phi(x) dx$) que, pour $t \ge 0$,

$$F(t) = \ln 2 + \int_0^t \frac{e^{-2x} - e^{-x}}{x} dx. \quad (4)$$

14. Retrouver l'égalité

$$\int_{1}^{2} \frac{e^{-x}}{x} dx = \ln 2 + C_2 - C_1 \quad (*).$$

Exercice

Soit f la fonction 2π -péridique définie par

$$\begin{cases} 1 & si \ x \in [0, \pi[\\ -1 & si \ x \in [-\pi, 0[\end{cases}) \end{cases}$$

- 1. Construire le graphe de f sur $[-\pi, \pi]$.
- 2. On note S(f) la série de Fourier de f. Donner la valeur de S(f)(x) pour $x \in R$.
- 3. Evaluer la somme de la série

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1}.$$

ANNEE UNIVERSITAIRE 2009/2010

PARCOURS: CSB, EEA, MEC, PHQ, SCP

Epreuve: MATHEMATIQUES DEVOIR SURVEILLE N°1

Date: Samedi 17 Octobre 2009 Heure: 8h30 Durée: 1 heure 30

Documents: Sans document

Epreuve de M : Jean-Louis ARTIGUE

Barème indicatif sur 25 : -I-(6) ; -II-(7) ; -III-(4) ; -IV-(8)

UE: PNG 301

|-I-| Etudier la nature de chacune des séries suivantes :

$$\begin{array}{lll} \underline{-1)} & \sum\limits_{n \, \geq \, 1} \sqrt{n}. sin(\,\frac{1}{n^{\,2}}\,) & ; & \underline{-2)} \sum\limits_{n \, \geq \, 0} \left(\,\frac{2n+1}{n+1}\,\right)^{\,n} & ; & \underline{-3)} \, \sum\limits_{n \, \geq \, 1} \left(-1\right)^{\,n}. sin(\,\frac{1}{n}\,) \,. \end{array}$$

On considère la série $\sum_{n \ge 1} \frac{1}{n.(n+1)}$. -II-

-1) Justifier brièvement mais avec précision, la convergence de cette série.

<u>-2)</u> Pour tout entier n de \mathbb{N}^* , on note $S_n = \sum_{k=1}^n \frac{1}{k.(k+1)}$, la somme partielle d'ordre n de cette série. Décomposer $\frac{1}{k(k+1)}$ sous la forme $\frac{a}{k} + \frac{b}{k+1}$ puis calculer S_n en fonction de n.

-3) En déduire la somme de la série étudiée.

La décomposition obtenue ci-dessus pourra être utile dans cet exercice.

Calculer chacune des deux intégrales $I = \int_{1}^{\frac{1}{2}} \frac{1}{x.(x+1)} dx$ et $J = \int_{0}^{\frac{\pi}{3}} \frac{\sin(t)}{\cos(t).(1+\cos(t))} dt$

$$f(x) = \frac{1}{1+x}$$
 et $g(x) = \frac{1}{1-2x}$

-2) On considère la fonction h définie par
$$h(x) = \frac{-x+2}{(1+x)(1-2x)}$$

<u>-a-</u> Montrer que l'on peut décomposer h(x) sous la forme h(x) = a.f(x) + b.g(x) (où a et b sont réels).

-b- En déduire le développement en série entière de h(x), son rayon de convergence et donner en fonction de l'entier n la valeur de $h^{(n)}(0)$.

ANNEE UNIVERSITAIRE 2009/2010 DEVOIR SURVEILLE N°2

PARCOURS :CSB,EEA,MEC,PHQ,SCP Code UE : PNG301

Epreuve : Mathématiques

Date: samedi 28 novembre 2009 Heure: 8h30 Durée: 1h30

Documents : non autorisés Epreuve de M : F.Levron

Barème indicatif sur 25 : I =5, II=10, III=10

Exercice 1

Le but est de calculer les intégrales $I = \int_{1}^{+\infty} f(t)dt$ et $J = \int_{-\infty}^{1} f(t)dt$, où $f(t) = \frac{1}{(t+1)\sqrt{t}}$.

- 1) Montrer que I et J convergent.
- 2) Calculer I et J.
- 3) En déduire $\int_{-0}^{+\infty} f(t)dt$.

Exercice 2

Soit f(x) la fonction paire et 2π -périodique telle que $f(x) = \frac{\pi}{2}$ -x si $x \in [0,\pi]$.

- 1) Représenter graphiquement y=f(x) sur l'intervalle $[-2\pi, +2\pi]$.
- 2) Calculer les coefficients de Fourier de f(x).
- 3) En déduire la série de Fourier F(x) de f(x).
- 4) Comparer F(x) et f(x).
- 5) Calculer $F(\pi)$. En déduire la somme de la série $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}$.

Exercice 3

Le but est de calculer l'intégrale $F(x) = \int_{-0}^{-1} f(t,x)dt$, où $f(t,x) = \frac{t^{x-1}-1}{\ln(t)}$, où $x \ge 1$.

- 1) Soit $x \ge 1$ et soit $g(t) = t^{x-1} 1 (x-1)\ln(t)$. Montrer que $g(t) \ge 0$ si $t \in [0,1]$.
- 2) En déduire que $0 \le f(t,x) \le x-1$ si $x \ge 1$ et $t \in [0,1[$.
- 3) Montrer que , si $x \ge 1$, l'intégrale F(x) converge et que la fonction F(x) est continue pour $x \ge 1$.
- 4) Montrer que F(x) est dérivable et calculer sa dérivée.
- 5) Calculer F(1) et en déduire la valeur de F(x).